mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-07 00:21:07 +01:00
Summary: There are still a few work to be done: - Move logging and unify AT_WARN with LOG(ERROR). - A few header files are still being plumbed through, need cleaning. - caffe2::EnforceNotMet aliasing is not done yet. - need to unify the macros. See c10/util/Exception.h This is mainly a codemod and not causing functional changes. If you find your job failing and trace back to this diff, usually it can be fixed by the following approaches: (1) add //caffe2/c10:c10 to your dependency (or transitive dependency). (2) change objects such as at::Error, at::Optional to the c10 namespace. (3) change functions to the c10 namespace. Especially, caffe2::MakeString is not overridden by the unified c10::str function. Nothing else changes. Please kindly consider not reverting this diff - it involves multiple rounds of rebasing and the fix is usually simple. Contact jiayq@ or AI Platform Dev for details. Pull Request resolved: https://github.com/pytorch/pytorch/pull/12354 Reviewed By: orionr Differential Revision: D10238910 Pulled By: Yangqing fbshipit-source-id: 7794d5bf2797ab0ca6ebaccaa2f7ebbd50ff8f32
435 lines
12 KiB
C++
435 lines
12 KiB
C++
#include <gtest/gtest.h>
|
|
|
|
#include <torch/nn/module.h>
|
|
#include <torch/nn/modules/linear.h>
|
|
#include <torch/nn/modules/rnn.h>
|
|
#include <torch/tensor.h>
|
|
#include <torch/utils.h>
|
|
|
|
#include <test/cpp/api/support.h>
|
|
|
|
using namespace torch::nn;
|
|
using namespace torch::test;
|
|
|
|
struct AGIUnit : torch::nn::Module {};
|
|
|
|
namespace test {
|
|
struct AGIUnit : torch::nn::Module {};
|
|
struct AGIUnit2 : torch::nn::Module {
|
|
AGIUnit2() : torch::nn::Module("Foo") {}
|
|
};
|
|
} // namespace test
|
|
|
|
struct ModuleTest : torch::test::SeedingFixture {};
|
|
|
|
TEST_F(ModuleTest, CanEnableAndDisableTrainingMode) {
|
|
Linear module(3, 4);
|
|
ASSERT_TRUE(module->is_training());
|
|
|
|
module->eval();
|
|
ASSERT_FALSE(module->is_training());
|
|
|
|
module->train();
|
|
ASSERT_TRUE(module->is_training());
|
|
}
|
|
|
|
TEST_F(ModuleTest, ZeroGrad) {
|
|
Linear module(3, 4);
|
|
auto weight = torch::ones({8, 3}, torch::requires_grad());
|
|
auto loss = module->forward(weight).sum();
|
|
loss.backward();
|
|
for (auto& parameter : module->parameters()) {
|
|
auto grad = parameter->grad();
|
|
ASSERT_TRUE(grad.defined());
|
|
ASSERT_NE(grad.sum().item<float>(), 0);
|
|
}
|
|
module->zero_grad();
|
|
for (auto& parameter : module->parameters()) {
|
|
auto grad = parameter->grad();
|
|
ASSERT_TRUE(grad.defined());
|
|
ASSERT_EQ(grad.sum().item<float>(), 0);
|
|
}
|
|
}
|
|
|
|
TEST_F(ModuleTest, ZeroGradWithUndefined) {
|
|
struct TestModule : torch::nn::Module {
|
|
TestModule() {
|
|
x = register_parameter("x", torch::ones(5, at::requires_grad()));
|
|
y = register_parameter("y", torch::ones(5, at::requires_grad()));
|
|
}
|
|
torch::Tensor x, y;
|
|
};
|
|
|
|
TestModule module;
|
|
auto z = module.x * 2;
|
|
z.sum().backward();
|
|
|
|
ASSERT_TRUE(module.x.grad().defined());
|
|
ASSERT_FALSE(module.y.grad().defined());
|
|
|
|
module.zero_grad();
|
|
|
|
ASSERT_TRUE(module.x.grad().defined());
|
|
ASSERT_FALSE(module.y.grad().defined());
|
|
|
|
ASSERT_EQ(module.x.grad().sum().item<float>(), 0);
|
|
}
|
|
|
|
TEST_F(ModuleTest, CanGetName) {
|
|
// CHECK instead of REQUIRE because demangling may fail.
|
|
AGIUnit agi;
|
|
// Call it twice just to make sure there are no bugs in the lazy
|
|
// initialization semantics.
|
|
EXPECT_TRUE(agi.name() == "AGIUnit");
|
|
EXPECT_TRUE(agi.name() == "AGIUnit");
|
|
EXPECT_TRUE(test::AGIUnit().name() == "test::AGIUnit");
|
|
EXPECT_TRUE(test::AGIUnit2().name() == "Foo");
|
|
}
|
|
|
|
TEST_F(ModuleTest, TestAsCastsModulesCorrectly) {
|
|
Linear module(3, 4);
|
|
ASSERT_EQ(module->as<Linear>(), module.get());
|
|
ASSERT_EQ(module->as<LinearImpl>(), module.get());
|
|
ASSERT_EQ(module->as<Module>(), module.get());
|
|
ASSERT_EQ(module->as<AGIUnit>(), nullptr);
|
|
|
|
std::shared_ptr<Module> raw = module.ptr();
|
|
ASSERT_EQ(raw->as<Linear>(), module.get());
|
|
ASSERT_EQ(raw->as<LinearImpl>(), module.get());
|
|
ASSERT_EQ(raw->as<Module>(), module.get());
|
|
ASSERT_EQ(raw->as<AGIUnit>(), nullptr);
|
|
|
|
Module& raw_ref = *raw.get();
|
|
ASSERT_EQ(raw_ref.as<Linear>(), module.get());
|
|
ASSERT_EQ(raw_ref.as<LinearImpl>(), module.get());
|
|
ASSERT_EQ(raw_ref.as<Module>(), module.get());
|
|
ASSERT_EQ(raw_ref.as<AGIUnit>(), nullptr);
|
|
if (auto* linear = raw_ref.as<Linear>()) {
|
|
ASSERT_EQ(linear->weight.ndimension(), 2);
|
|
}
|
|
|
|
AGIUnit unit;
|
|
ASSERT_EQ(unit.as<Linear>(), nullptr);
|
|
ASSERT_EQ(unit.as<LinearImpl>(), nullptr);
|
|
ASSERT_EQ(unit.as<AGIUnit>(), &unit);
|
|
}
|
|
|
|
TEST_F(ModuleTest, Conversion_MultiCUDA) {
|
|
Linear module(128, 64);
|
|
for (auto& parameter : module->parameters()) {
|
|
ASSERT_EQ(parameter->device(), torch::Device(torch::kCPU));
|
|
ASSERT_EQ(parameter->dtype(), torch::kFloat32);
|
|
}
|
|
{
|
|
module->to({torch::kCUDA, 0});
|
|
for (auto& parameter : module->parameters()) {
|
|
ASSERT_EQ(parameter->device().type(), torch::Device::Type::CUDA);
|
|
ASSERT_EQ(parameter->device().index(), 0);
|
|
}
|
|
module->to({at::kCUDA, 1});
|
|
for (auto& parameter : module->parameters()) {
|
|
ASSERT_EQ(parameter->device().type(), torch::Device::Type::CUDA);
|
|
ASSERT_EQ(parameter->device().index(), 1);
|
|
}
|
|
}
|
|
{
|
|
module->to(torch::Device(torch::kCPU));
|
|
for (auto& parameter : module->parameters()) {
|
|
ASSERT_EQ(parameter->device().type(), torch::Device::Type::CPU);
|
|
}
|
|
}
|
|
{
|
|
module->to(torch::kInt32);
|
|
for (auto& parameter : module->parameters()) {
|
|
ASSERT_EQ(parameter->dtype(), torch::kInt32);
|
|
}
|
|
}
|
|
{
|
|
module->to(torch::kFloat64);
|
|
for (auto& parameter : module->parameters()) {
|
|
ASSERT_EQ(parameter->dtype(), torch::kFloat64);
|
|
}
|
|
}
|
|
{
|
|
module->to(torch::Device(torch::kCUDA, 1), torch::kUInt8);
|
|
for (auto& parameter : module->parameters()) {
|
|
ASSERT_EQ(parameter->device().type(), torch::Device::Type::CUDA);
|
|
ASSERT_EQ(parameter->device().index(), 1);
|
|
}
|
|
for (auto& parameter : module->parameters()) {
|
|
ASSERT_EQ(parameter->dtype(), torch::kUInt8);
|
|
}
|
|
}
|
|
}
|
|
|
|
TEST_F(ModuleTest, CallingCloneOnModuleThatDoesNotOverrideCloneThrows) {
|
|
struct UnCloneable : Module {};
|
|
UnCloneable module;
|
|
ASSERT_THROWS_WITH(module.clone(), "clone() has not been implemented");
|
|
}
|
|
|
|
TEST_F(ModuleTest, CallingCloneOnModuleThatDoesOverrideCloneDoesNotThrow) {
|
|
struct Cloneable : Module {
|
|
std::shared_ptr<Module> clone(
|
|
c10::optional<torch::Device> device = c10::nullopt) const override {
|
|
return nullptr;
|
|
}
|
|
};
|
|
Cloneable module;
|
|
ASSERT_NO_THROW({ module.clone(); });
|
|
}
|
|
|
|
TEST_F(ModuleTest, CloneCreatesDistinctParameters) {
|
|
struct TestModule : public Cloneable<TestModule> {
|
|
TestModule() {
|
|
reset();
|
|
}
|
|
void reset() override {
|
|
l1 = register_module("l1", Linear(10, 3));
|
|
l2 = register_module("l2", Linear(3, 5));
|
|
l3 = register_module("l3", Linear(5, 100));
|
|
buffer = register_buffer("buf", torch::ones({2, 2}));
|
|
}
|
|
|
|
Linear l1{nullptr}, l2{nullptr}, l3{nullptr};
|
|
torch::Tensor buffer;
|
|
};
|
|
|
|
auto module = std::make_shared<TestModule>();
|
|
|
|
torch::NoGradGuard no_grad;
|
|
|
|
auto module2 = module->clone();
|
|
auto params1 = module->parameters();
|
|
auto params2 = module2->parameters();
|
|
ASSERT_EQ(params1.size(), 6);
|
|
ASSERT_EQ(params2.size(), 6);
|
|
for (auto& param : params1) {
|
|
ASSERT_FALSE(pointer_equal(param.value, params2[param.key]));
|
|
ASSERT_TRUE(param->allclose(params2[param.key]));
|
|
param->add_(2);
|
|
}
|
|
for (auto& param : params1) {
|
|
ASSERT_FALSE(param->allclose(params2[param.key]));
|
|
}
|
|
|
|
auto buffers1 = module->buffers();
|
|
auto buffers2 = module2->buffers();
|
|
ASSERT_EQ(buffers1.size(), 1);
|
|
ASSERT_EQ(buffers2.size(), 1);
|
|
for (auto& buffer : buffers1) {
|
|
ASSERT_FALSE(pointer_equal(buffer.value, buffers2[buffer.key]));
|
|
ASSERT_TRUE(buffer->allclose(buffers2[buffer.key]));
|
|
buffer->add_(2);
|
|
}
|
|
for (auto& buffer : buffers1) {
|
|
ASSERT_FALSE(buffer->allclose(buffers2[buffer.key]));
|
|
}
|
|
}
|
|
|
|
TEST_F(ModuleTest, ClonePreservesExternalReferences) {
|
|
struct TestModule : public Cloneable<TestModule> {
|
|
TestModule() {
|
|
reset();
|
|
}
|
|
void reset() override {
|
|
weight = register_parameter("weight", torch::ones({4, 4}));
|
|
}
|
|
torch::Tensor weight;
|
|
};
|
|
auto module = std::make_shared<TestModule>();
|
|
{
|
|
torch::NoGradGuard no_grad;
|
|
module->weight += 1;
|
|
}
|
|
ASSERT_TRUE(pointer_equal(module->weight, module->parameters()["weight"]));
|
|
ASSERT_TRUE(module->weight.allclose(module->parameters()["weight"]));
|
|
|
|
auto module2 = std::dynamic_pointer_cast<TestModule>(
|
|
std::shared_ptr<Module>(module->clone()));
|
|
ASSERT_FALSE(pointer_equal(module2->weight, module->weight));
|
|
ASSERT_TRUE(pointer_equal(module2->weight, module2->parameters()["weight"]));
|
|
ASSERT_TRUE(module2->weight.allclose(module2->parameters()["weight"]));
|
|
ASSERT_TRUE(module2->weight.allclose(module->weight));
|
|
ASSERT_FALSE(pointer_equal(module2->weight, module->parameters()["weight"]));
|
|
}
|
|
|
|
TEST_F(ModuleTest, CloneCopiesTheValuesOfVariablesOfSubmodules) {
|
|
struct TestModule : public Cloneable<TestModule> {
|
|
TestModule() {
|
|
reset();
|
|
}
|
|
void reset() override {
|
|
weight = register_parameter("weight", torch::ones({4, 4}));
|
|
}
|
|
|
|
torch::Tensor weight;
|
|
int value = 0;
|
|
};
|
|
struct NestedModule : public Cloneable<NestedModule> {
|
|
NestedModule() {
|
|
reset();
|
|
}
|
|
void reset() override {
|
|
module = register_module("module", std::make_shared<TestModule>());
|
|
}
|
|
std::shared_ptr<TestModule> module;
|
|
};
|
|
|
|
auto a = std::make_shared<NestedModule>();
|
|
{
|
|
torch::NoGradGuard no_grad;
|
|
a->module->weight += 1;
|
|
a->module->value = 123;
|
|
}
|
|
|
|
auto b = std::dynamic_pointer_cast<NestedModule>(a->clone());
|
|
|
|
ASSERT_FALSE(pointer_equal(b->module->weight, a->module->weight));
|
|
ASSERT_TRUE(
|
|
pointer_equal(b->module->weight, b->module->parameters()["weight"]));
|
|
ASSERT_TRUE(b->module->parameters()["weight"].allclose(a->module->weight));
|
|
ASSERT_TRUE(b->module->weight.allclose(a->module->weight));
|
|
ASSERT_EQ(b->module->value, a->module->value);
|
|
}
|
|
|
|
TEST_F(ModuleTest, CloneToDevicePreservesTheDeviceOfParameters_CUDA) {
|
|
struct TestModule : public Cloneable<TestModule> {
|
|
TestModule() {
|
|
reset();
|
|
}
|
|
void reset() override {
|
|
l1 = register_module("l1", Linear(10, 3));
|
|
l2 = register_module("l2", Linear(3, 5));
|
|
l3 = register_module("l3", Linear(5, 100));
|
|
buffer = register_buffer("buf", torch::ones({2, 2}));
|
|
}
|
|
|
|
Linear l1{nullptr}, l2{nullptr}, l3{nullptr};
|
|
torch::Tensor buffer;
|
|
};
|
|
|
|
TestModule m;
|
|
torch::Device device(torch::kCUDA, 0);
|
|
|
|
m.to(device);
|
|
|
|
auto clone = m.clone();
|
|
for (const auto& parameter : clone->parameters()) {
|
|
ASSERT_EQ(parameter->device().type(), device.type());
|
|
ASSERT_EQ(parameter->device().index(), device.index());
|
|
}
|
|
for (const auto& buffer : clone->buffers()) {
|
|
ASSERT_EQ(buffer->device().type(), device.type());
|
|
ASSERT_EQ(buffer->device().index(), device.index());
|
|
}
|
|
}
|
|
|
|
TEST_F(ModuleTest, CloningToAParticularDevicePlacesAllParametersThere_CUDA) {
|
|
struct TestModule : public Cloneable<TestModule> {
|
|
TestModule() {
|
|
reset();
|
|
}
|
|
void reset() override {
|
|
l1 = register_module("l1", Linear(10, 3));
|
|
l2 = register_module("l2", Linear(3, 5));
|
|
l3 = register_module("l3", Linear(5, 100));
|
|
buffer = register_buffer("buf", torch::ones({2, 2}));
|
|
}
|
|
|
|
Linear l1{nullptr}, l2{nullptr}, l3{nullptr};
|
|
torch::Tensor buffer;
|
|
};
|
|
|
|
TestModule m;
|
|
torch::Device device(torch::kCUDA, 1);
|
|
// everything is on CPU here
|
|
auto clone = m.clone(device);
|
|
for (const auto& parameter : clone->parameters()) {
|
|
ASSERT_EQ(parameter->device().type(), device.type());
|
|
ASSERT_EQ(parameter->device().index(), device.index());
|
|
}
|
|
for (const auto& buffer : clone->buffers()) {
|
|
ASSERT_EQ(buffer->device().type(), device.type());
|
|
ASSERT_EQ(buffer->device().index(), device.index());
|
|
}
|
|
}
|
|
|
|
struct ParameterTestModule : Module {
|
|
ParameterTestModule() {
|
|
a = register_parameter("a", torch::zeros({2, 2}));
|
|
b = register_parameter("b", torch::ones({2, 2}));
|
|
c = register_parameter("c", torch::ones({2, 2}) * 2);
|
|
}
|
|
|
|
torch::Tensor a, b, c;
|
|
};
|
|
|
|
TEST_F(ModuleTest, HasCorrectNumberOfParameters) {
|
|
ParameterTestModule module;
|
|
ASSERT_EQ(module.parameters().size(), 3);
|
|
}
|
|
|
|
TEST_F(ModuleTest, ContainsParametersWithTheCorrectName) {
|
|
ParameterTestModule module;
|
|
auto parameters = module.parameters();
|
|
ASSERT_TRUE(parameters.contains("a"));
|
|
ASSERT_TRUE(parameters.contains("b"));
|
|
ASSERT_TRUE(parameters.contains("c"));
|
|
}
|
|
|
|
struct BufferTestModule : Module {
|
|
BufferTestModule() {
|
|
a = register_buffer("a", torch::zeros({2, 2}));
|
|
b = register_buffer("b", torch::ones({2, 2}));
|
|
c = register_buffer("c", torch::ones({2, 2}) * 2);
|
|
}
|
|
|
|
torch::Tensor a, b, c;
|
|
};
|
|
|
|
TEST_F(ModuleTest, HasCorrectNumberOfBuffers) {
|
|
BufferTestModule module;
|
|
ASSERT_EQ(module.buffers().size(), 3);
|
|
}
|
|
|
|
TEST_F(ModuleTest, ContainsBuffersWithTheCorrectName) {
|
|
BufferTestModule module;
|
|
auto buffers = module.buffers();
|
|
ASSERT_TRUE(buffers.contains("a"));
|
|
ASSERT_TRUE(buffers.contains("b"));
|
|
ASSERT_TRUE(buffers.contains("c"));
|
|
}
|
|
|
|
struct AImpl : torch::nn::Module {
|
|
AImpl() : x_(123) {}
|
|
AImpl(int x) : x_(x) {}
|
|
int x_;
|
|
};
|
|
TORCH_MODULE(A);
|
|
|
|
TEST_F(
|
|
ModuleTest,
|
|
DefaultConstructorOfModuleHolderCallsDefaultConstructorOfImpl) {
|
|
A a;
|
|
ASSERT_TRUE(a);
|
|
ASSERT_FALSE(a.is_empty());
|
|
ASSERT_EQ(a->x_, 123);
|
|
}
|
|
|
|
TEST_F(
|
|
ModuleTest,
|
|
ValueConstructorOfModuleHolderCallsCorrectConstructorInImpl) {
|
|
A a(5);
|
|
ASSERT_TRUE(a);
|
|
ASSERT_FALSE(a.is_empty());
|
|
ASSERT_EQ(a->x_, 5);
|
|
}
|
|
|
|
TEST_F(ModuleTest, NullptrConstructorLeavesTheModuleHolderInEmptyState) {
|
|
A a = nullptr;
|
|
ASSERT_FALSE(a);
|
|
ASSERT_TRUE(a.is_empty());
|
|
ASSERT_THROWS_WITH(a->x_, "Accessing empty ModuleHolder");
|
|
}
|