mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-07 00:21:07 +01:00
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/23170 Test Plan: Imported from OSS Differential Revision: D16441912 Pulled By: suo fbshipit-source-id: a33485178a329d54e41e364c4f14950f88481c55
445 lines
15 KiB
C++
445 lines
15 KiB
C++
#include <google/protobuf/util/json_util.h>
|
|
#include <google/protobuf/util/type_resolver_util.h>
|
|
|
|
#include <ATen/core/functional.h>
|
|
#include <c10/util/Exception.h>
|
|
#include <torch/csrc/jit/import.h>
|
|
#include <torch/csrc/jit/import_export_helpers.h>
|
|
#include <torch/csrc/jit/import_source.h>
|
|
#include <torch/csrc/jit/ir.h>
|
|
#include <torch/csrc/jit/pickler.h>
|
|
#include <torch/csrc/jit/script/script_type_parser.h>
|
|
#include <torch/csrc/jit/source_range_serialization.h>
|
|
#include <torch/csrc/jit/source_range_serialization_impl.h>
|
|
|
|
#include "caffe2/core/common.h"
|
|
#include "caffe2/core/types.h"
|
|
#include "caffe2/proto/caffe2_pb.h"
|
|
#include "caffe2/proto/torch_pb.h"
|
|
#include "caffe2/serialize/file_adapter.h"
|
|
#include "caffe2/serialize/inline_container.h"
|
|
#include "caffe2/serialize/istream_adapter.h"
|
|
|
|
#include <ATen/ATen.h>
|
|
|
|
#include <fstream>
|
|
#include <string>
|
|
#include <unordered_map>
|
|
#include <vector>
|
|
|
|
namespace torch {
|
|
namespace jit {
|
|
|
|
using caffe2::serialize::FileAdapter;
|
|
using caffe2::serialize::IStreamAdapter;
|
|
using caffe2::serialize::PyTorchStreamReader;
|
|
using caffe2::serialize::ReadAdapterInterface;
|
|
|
|
namespace {
|
|
|
|
struct ClassResolver : public script::Resolver {
|
|
explicit ClassResolver(std::shared_ptr<script::CompilationUnit> cu)
|
|
: cu_(std::move(cu)) {}
|
|
TypePtr resolveType(const std::string& name, const SourceRange& loc)
|
|
const override {
|
|
return cu_->get_type(c10::QualifiedName(name));
|
|
}
|
|
|
|
private:
|
|
std::shared_ptr<script::CompilationUnit> cu_;
|
|
};
|
|
|
|
// this is a deserializer class which loads script modules from pt files. the
|
|
// content of the file is written using PyTorchStreamWriter, for details please
|
|
// check caffe2/serialize/inline_container.h. all the records except the last
|
|
// one are tensor data, and the last record is a serialized ModelProto, defined
|
|
// in caffe2/proto/torch.proto. ModelProto contains all the metadata of the
|
|
// model, and it is serialized as json.
|
|
class ScriptModuleDeserializer final {
|
|
public:
|
|
ScriptModuleDeserializer(
|
|
std::shared_ptr<script::CompilationUnit> cu,
|
|
std::unique_ptr<PyTorchStreamReader> reader)
|
|
: compilation_unit_(cu),
|
|
reader_(std::move(reader)) {}
|
|
|
|
script::Module deserialize(
|
|
c10::optional<at::Device> device,
|
|
script::ExtraFilesMap& extra_files);
|
|
|
|
private:
|
|
at::Tensor loadTensor(
|
|
const torch::TensorDef& tensor_proto,
|
|
std::unordered_map<std::string, at::Storage>& storageMap);
|
|
|
|
script::Module convertModule(const torch::ModuleDef& module_def);
|
|
|
|
void loadTensorTable(torch::ModelDef* model_def);
|
|
std::vector<IValue> loadPickleArchive(const std::string& name);
|
|
void importCallback(const std::string& qualifier);
|
|
void moduleSetState(const script::Module& module, IValue state);
|
|
|
|
std::shared_ptr<script::CompilationUnit> compilation_unit_;
|
|
|
|
std::unique_ptr<PyTorchStreamReader> reader_;
|
|
c10::optional<at::Device> device_;
|
|
std::vector<std::string> moduleStack_;
|
|
|
|
std::vector<at::Tensor> tensor_table_;
|
|
std::vector<IValue> pickled_ivalues_;
|
|
|
|
std::unordered_set<std::string> imported_libs_;
|
|
};
|
|
|
|
script::Module ScriptModuleDeserializer::deserialize(
|
|
c10::optional<at::Device> device,
|
|
script::ExtraFilesMap& extra_files) {
|
|
C10_LOG_API_USAGE_ONCE("torch.script.load");
|
|
torch::ModelDef model_def;
|
|
at::DataPtr data_ptr;
|
|
size_t data_size;
|
|
std::tie(data_ptr, data_size) = reader_->getRecord("model.json");
|
|
// NB: cannot use JsonStringToMessage, since fbcode's protobuf is too old
|
|
// be consistent with JsonStringToMessage
|
|
std::string url_prefix = "type.googleapis.com";
|
|
std::unique_ptr<::google::protobuf::util::TypeResolver> resolver(
|
|
::google::protobuf::util::NewTypeResolverForDescriptorPool(
|
|
url_prefix, model_def.GetDescriptor()->file()->pool()));
|
|
std::string json_string = std::string(
|
|
static_cast<char*>(data_ptr.get()),
|
|
static_cast<char*>(data_ptr.get()) + data_size);
|
|
std::string binary_string;
|
|
::google::protobuf::util::JsonParseOptions opts;
|
|
opts.ignore_unknown_fields = true;
|
|
auto convert_result = ::google::protobuf::util::JsonToBinaryString(
|
|
resolver.get(),
|
|
url_prefix + "/" + model_def.GetDescriptor()->full_name(),
|
|
json_string,
|
|
&binary_string,
|
|
opts);
|
|
if (!convert_result.ok()) {
|
|
std::stringstream ss;
|
|
ss << convert_result;
|
|
AT_ERROR(ss.str());
|
|
}
|
|
AT_ASSERTM(
|
|
model_def.ParseFromString(binary_string),
|
|
"JSON transcoder produced invalid protobuf output.");
|
|
device_ = device;
|
|
|
|
const auto& module_def = model_def.main_module();
|
|
|
|
// Load extra files.
|
|
for (const auto& kv : extra_files) {
|
|
const std::string& key = "extra/" + kv.first;
|
|
if (reader_->hasFile(key)) {
|
|
at::DataPtr meta_ptr;
|
|
size_t meta_size;
|
|
std::tie(meta_ptr, meta_size) = reader_->getRecord(key);
|
|
extra_files[kv.first] =
|
|
std::string(static_cast<char*>(meta_ptr.get()), meta_size);
|
|
}
|
|
}
|
|
|
|
loadTensorTable(&model_def);
|
|
if (model_def.proto_version() >= 2) {
|
|
pickled_ivalues_ = loadPickleArchive("attributes.pkl");
|
|
}
|
|
|
|
return convertModule(module_def);
|
|
}
|
|
|
|
void ScriptModuleDeserializer::loadTensorTable(torch::ModelDef* model_def) {
|
|
std::unordered_map<std::string, at::Storage> storageMap;
|
|
for (const torch::TensorDef& tensor : model_def->tensors()) {
|
|
tensor_table_.emplace_back(loadTensor(tensor, storageMap));
|
|
}
|
|
}
|
|
|
|
std::vector<IValue> ScriptModuleDeserializer::loadPickleArchive(const std::string& name) {
|
|
at::DataPtr attributes_ptr;
|
|
size_t attributes_size;
|
|
std::tie(attributes_ptr, attributes_size) = reader_->getRecord(name);
|
|
Unpickler unpickler(
|
|
attributes_ptr.get(),
|
|
attributes_size,
|
|
&tensor_table_,
|
|
[&](const c10::QualifiedName& qn) {
|
|
importCallback(qn.prefix());
|
|
return c10::StrongTypePtr(
|
|
compilation_unit_, compilation_unit_->get_class(qn));
|
|
});
|
|
return unpickler.parse_ivalue_list();
|
|
}
|
|
|
|
at::Tensor ScriptModuleDeserializer::loadTensor(
|
|
const torch::TensorDef& tensor_proto,
|
|
std::unordered_map<std::string, at::Storage>& storageMap) {
|
|
std::vector<int64_t> dims(
|
|
tensor_proto.dims().begin(), tensor_proto.dims().end());
|
|
std::vector<int64_t> strides(
|
|
tensor_proto.strides().begin(), tensor_proto.strides().end());
|
|
auto type = at::typeMetaToScalarType(
|
|
caffe2::DataTypeToTypeMeta(tensor_proto.data_type()));
|
|
const std::string& record_key = tensor_proto.data().key();
|
|
AT_ASSERT(tensor_proto.has_device() && !tensor_proto.device().empty());
|
|
at::Device device(tensor_proto.device());
|
|
if (device_.has_value()) {
|
|
// override the device, if user provides map_location
|
|
device = device_.value();
|
|
}
|
|
|
|
auto storage_it = storageMap.find(record_key);
|
|
if (storage_it == storageMap.end()) {
|
|
at::DataPtr storage_ptr;
|
|
uint64_t record_size;
|
|
std::tie(storage_ptr, record_size) = reader_->getRecord(record_key);
|
|
auto cpu_storage = at::Storage(
|
|
at::CPU(type).typeMeta(),
|
|
record_size / at::CPU(type).typeMeta().itemsize(),
|
|
std::move(storage_ptr),
|
|
/*allocator=*/nullptr,
|
|
/*resizable=*/false); // NB: we didn't set any allocator for the tensor
|
|
if (device.type() == at::DeviceType::CPU) {
|
|
storage_it =
|
|
storageMap.insert(std::make_pair(record_key, cpu_storage)).first;
|
|
} else if (device.type() == at::DeviceType::CUDA) {
|
|
at::Tensor cpu_tensor =
|
|
at::empty({0}, at::CPU(type).options()).set_(cpu_storage);
|
|
at::Storage cuda_storage =
|
|
cpu_tensor.to(device, cpu_tensor.scalar_type()).storage();
|
|
storage_it =
|
|
storageMap.insert(std::make_pair(record_key, cuda_storage)).first;
|
|
} else {
|
|
AT_ERROR(
|
|
"supported devices include CPU and CUDA, however got ",
|
|
at::DeviceTypeName(device.type(), false));
|
|
}
|
|
}
|
|
if (storage_it->second.device().type() != device.type() ||
|
|
(device.has_index() &&
|
|
storage_it->second.device().index() != device.index())) {
|
|
std::stringstream oss;
|
|
oss << "storage previously was specified with device "
|
|
<< storage_it->second.device() << "but now is specified with device "
|
|
<< device << std::endl;
|
|
AT_ERROR(oss.str());
|
|
}
|
|
|
|
at::Tensor result;
|
|
if (device.type() == at::DeviceType::CPU) {
|
|
result =
|
|
at::empty({0}, at::CPU(type).options())
|
|
.set_(storage_it->second, tensor_proto.offset(), dims, strides);
|
|
} else if (device.type() == at::DeviceType::CUDA) {
|
|
result =
|
|
at::empty(
|
|
{0}, c10::TensorOptions(type).device(storage_it->second.device()))
|
|
.set_(storage_it->second, tensor_proto.offset(), dims, strides);
|
|
}
|
|
AT_ASSERT(result.defined());
|
|
|
|
result = autograd::make_variable(result, tensor_proto.requires_grad());
|
|
|
|
return result;
|
|
}
|
|
|
|
void ScriptModuleDeserializer::importCallback(const std::string& qualifier) {
|
|
if (imported_libs_.count(qualifier)) {
|
|
return;
|
|
}
|
|
imported_libs_.insert(qualifier);
|
|
std::function<void(const std::string&)> import_callback =
|
|
[this](const std::string& qualifier) { importCallback(qualifier); };
|
|
const std::string path = ImportExportHelpers::qualifierToPath(qualifier);
|
|
at::DataPtr data;
|
|
size_t size;
|
|
std::tie(data, size) = reader_->getRecord(path);
|
|
auto src = std::make_shared<Source>(
|
|
std::string(static_cast<const char*>(data.get()), size), path, 0);
|
|
script::import_libs(
|
|
compilation_unit_, qualifier, src, tensor_table_, import_callback);
|
|
}
|
|
|
|
void ScriptModuleDeserializer::moduleSetState(
|
|
const script::Module& module,
|
|
IValue state) {
|
|
auto setstate = module.find_method("__setstate__");
|
|
|
|
TORCH_CHECK(
|
|
setstate,
|
|
"Cannot call '__setstate__' method because"
|
|
" it does not exist");
|
|
|
|
// TODO: once modules are first class in the interpreter and methods are not
|
|
// lowered, change this to `module->run_method("__setstate__", {state});`
|
|
if (setstate->num_inputs() == 1) {
|
|
setstate->run({module.module_object()});
|
|
} else if (setstate->num_inputs() == 2) {
|
|
setstate->run({module.module_object(), state});
|
|
} else {
|
|
AT_ERROR("Unexpected schema on '__setstate__'");
|
|
}
|
|
}
|
|
|
|
script::Module ScriptModuleDeserializer::convertModule(
|
|
const torch::ModuleDef& module_def) {
|
|
moduleStack_.emplace_back(module_def.name());
|
|
auto module = script::Module(moduleStack_, compilation_unit_);
|
|
for (int i = 0; i < module_def.submodules_size(); ++i) {
|
|
const torch::ModuleDef& sub_def = module_def.submodules(i);
|
|
auto submodule = convertModule(sub_def);
|
|
module.register_module(sub_def.name(), submodule);
|
|
}
|
|
for (int i = 0; i < module_def.parameters_size(); ++i) {
|
|
const torch::ParameterDef& param_def = module_def.parameters(i);
|
|
at::Tensor tensor = tensor_table_.at(param_def.tensor_id());
|
|
if (param_def.is_buffer()) {
|
|
module.register_buffer(param_def.name(), tensor);
|
|
} else {
|
|
module.register_parameter(param_def.name(), tensor, /*is_buffer=*/false);
|
|
}
|
|
}
|
|
script::ScriptTypeParser typeParser(
|
|
std::make_shared<ClassResolver>(compilation_unit_));
|
|
for (int i = 0; i < module_def.attributes_size(); ++i) {
|
|
const torch::AttributeDef& attr_def = module_def.attributes(i);
|
|
if (module.find_buffer(attr_def.name())) {
|
|
// TODO: handle this above so this can be removed
|
|
continue;
|
|
}
|
|
|
|
IValue ivalue;
|
|
if (attr_def.id() >= 0) {
|
|
// attribute has no value in the table, set it to None for now. After
|
|
// __getstate__, check that all the attributes that are not Optional
|
|
// can't be None
|
|
ivalue = pickled_ivalues_.at(attr_def.id());
|
|
}
|
|
|
|
module.register_attribute(
|
|
attr_def.name(), typeParser.parseType(attr_def.type()), ivalue);
|
|
}
|
|
|
|
// If present, load in the table of source ranges from the original
|
|
// generating code.
|
|
std::shared_ptr<SourceRangeUnpickler> gen_ranges = nullptr;
|
|
if (module_def.has_torchscript_debug_arena()) {
|
|
at::DataPtr data;
|
|
size_t size;
|
|
std::tie(data, size) =
|
|
reader_->getRecord(module_def.torchscript_debug_arena().key());
|
|
|
|
gen_ranges =
|
|
std::make_shared<ConcreteSourceRangeUnpickler>(std::move(data), size);
|
|
}
|
|
|
|
if (module_def.has_torchscript_arena()) {
|
|
at::DataPtr data;
|
|
size_t size;
|
|
std::tie(data, size) =
|
|
reader_->getRecord(module_def.torchscript_arena().key());
|
|
std::string data_str(static_cast<const char*>(data.get()), size);
|
|
auto src = std::make_shared<Source>(
|
|
std::string(static_cast<const char*>(data.get()), size),
|
|
module_def.torchscript_arena().key(),
|
|
1,
|
|
std::move(gen_ranges));
|
|
|
|
std::function<void(const std::string&)> import_callback =
|
|
[&, this](const std::string& qualifier) { importCallback(qualifier); };
|
|
script::import_methods(module, src, tensor_table_, import_callback);
|
|
}
|
|
|
|
if (module_def.has_get_state_attribute_id()) {
|
|
moduleSetState(
|
|
module, pickled_ivalues_.at(module_def.get_state_attribute_id()));
|
|
}
|
|
|
|
for (const auto& slot : module.get_attributes()) {
|
|
// Verify that all the non-optional attributes have been initialized
|
|
// TODO: Issue #20497
|
|
if (slot.type()->kind() != TypeKind::OptionalType) {
|
|
TORCH_CHECK(
|
|
!slot.value().isNone(),
|
|
"The field '",
|
|
slot.name(),
|
|
"' was left unitialized after __setstate__, but expected a ",
|
|
"value of type '",
|
|
slot.type()->python_str(),
|
|
"'");
|
|
}
|
|
}
|
|
|
|
moduleStack_.pop_back();
|
|
return module;
|
|
}
|
|
|
|
} // namespace
|
|
|
|
script::Module import_ir_module(
|
|
std::shared_ptr<script::CompilationUnit> cu,
|
|
std::istream& in,
|
|
c10::optional<at::Device> device,
|
|
script::ExtraFilesMap& extra_files) {
|
|
auto reader = torch::make_unique<PyTorchStreamReader>(&in);
|
|
ScriptModuleDeserializer deserializer(
|
|
std::move(cu), std::move(reader));
|
|
return deserializer.deserialize(device, extra_files);
|
|
}
|
|
|
|
script::Module import_ir_module(
|
|
std::shared_ptr<script::CompilationUnit> cu,
|
|
const std::string& filename,
|
|
c10::optional<at::Device> device,
|
|
script::ExtraFilesMap& extra_files) {
|
|
auto reader = torch::make_unique<PyTorchStreamReader>(filename);
|
|
ScriptModuleDeserializer deserializer(
|
|
std::move(cu), std::move(reader));
|
|
return deserializer.deserialize(device, extra_files);
|
|
}
|
|
|
|
script::Module import_ir_module(
|
|
std::shared_ptr<script::CompilationUnit> cu,
|
|
std::unique_ptr<ReadAdapterInterface> rai,
|
|
c10::optional<at::Device> device,
|
|
script::ExtraFilesMap& extra_files) {
|
|
auto reader = torch::make_unique<PyTorchStreamReader>(std::move(rai));
|
|
ScriptModuleDeserializer deserializer(
|
|
std::move(cu), std::move(reader));
|
|
return deserializer.deserialize(device, extra_files);
|
|
}
|
|
|
|
script::Module load(
|
|
std::istream& in,
|
|
c10::optional<at::Device> device,
|
|
script::ExtraFilesMap& extra_files) {
|
|
std::unique_ptr<IStreamAdapter> rai =
|
|
caffe2::make_unique<IStreamAdapter>(&in);
|
|
auto module = load(std::move(rai), device, extra_files);
|
|
return module;
|
|
}
|
|
|
|
script::Module load(
|
|
const std::string& filename,
|
|
c10::optional<at::Device> device,
|
|
script::ExtraFilesMap& extra_files) {
|
|
std::unique_ptr<FileAdapter> rai = caffe2::make_unique<FileAdapter>(filename);
|
|
auto module = load(std::move(rai), device, extra_files);
|
|
return module;
|
|
}
|
|
|
|
script::Module load(
|
|
std::unique_ptr<ReadAdapterInterface> rai,
|
|
c10::optional<c10::Device> device,
|
|
script::ExtraFilesMap& extra_files) {
|
|
auto reader = torch::make_unique<PyTorchStreamReader>(std::move(rai));
|
|
auto cu = std::make_shared<script::CompilationUnit>();
|
|
ScriptModuleDeserializer deserializer(
|
|
std::move(cu), std::move(reader));
|
|
return deserializer.deserialize(device, extra_files);
|
|
}
|
|
|
|
} // namespace jit
|
|
} // namespace torch
|