mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-07 12:21:27 +01:00
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/12101 clean up some duplicate test code Reviewed By: ZolotukhinM Differential Revision: D10051914 fbshipit-source-id: 698ff144a85e8c70572116c5ddb415cd2396b4e3
62 lines
1.5 KiB
Python
62 lines
1.5 KiB
Python
## @package test_util
|
|
# Module caffe2.python.test_util
|
|
from __future__ import absolute_import
|
|
from __future__ import division
|
|
from __future__ import print_function
|
|
from __future__ import unicode_literals
|
|
import numpy as np
|
|
from caffe2.python import core, workspace
|
|
|
|
import unittest
|
|
|
|
|
|
def rand_array(*dims):
|
|
# np.random.rand() returns float instead of 0-dim array, that's why need to
|
|
# do some tricks
|
|
return np.array(np.random.rand(*dims) - 0.5).astype(np.float32)
|
|
|
|
|
|
def randBlob(name, type, *dims, **kwargs):
|
|
offset = kwargs['offset'] if 'offset' in kwargs else 0.0
|
|
workspace.FeedBlob(name, np.random.rand(*dims).astype(type) + offset)
|
|
|
|
|
|
def randBlobFloat32(name, *dims, **kwargs):
|
|
randBlob(name, np.float32, *dims, **kwargs)
|
|
|
|
|
|
def randBlobsFloat32(names, *dims, **kwargs):
|
|
for name in names:
|
|
randBlobFloat32(name, *dims, **kwargs)
|
|
|
|
|
|
def numOps(net):
|
|
return len(net.Proto().op)
|
|
|
|
|
|
def str_compare(a, b, encoding="utf8"):
|
|
if isinstance(a, bytes):
|
|
a = a.decode(encoding)
|
|
if isinstance(b, bytes):
|
|
b = b.decode(encoding)
|
|
return a == b
|
|
|
|
|
|
class TestCase(unittest.TestCase):
|
|
@classmethod
|
|
def setUpClass(cls):
|
|
workspace.GlobalInit([
|
|
'caffe2',
|
|
'--caffe2_log_level=0',
|
|
])
|
|
# clear the default engines settings to separate out its
|
|
# affect from the ops tests
|
|
core.SetEnginePref({}, {})
|
|
|
|
def setUp(self):
|
|
self.ws = workspace.C.Workspace()
|
|
workspace.ResetWorkspace()
|
|
|
|
def tearDown(self):
|
|
workspace.ResetWorkspace()
|