pytorch/test/cpp/jit/test_backend.cpp
Jacob Szwejbka 70f3078dd6 [Pytorch Edge] Wrap lowered module in to_backend (#71597)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/71597

Problem: _jit_to_backend overrides get/set state. This means any attributes added to the module after lowering will not be preserved after serialization. For edge workflows the biggest problem here is it breaks bundled_inputs.

Solution?:

Real quick and easy way to handle issues with to_backend overriding get/set state. Wraps the lowered module in another module and has forwarding functions for the api specified in 'method_compile_spec'.

The tradeoff with this approach is now the actual workhorse of the module is 1 layer deep which might make debugging slightly grosser/more difficult/confusing. The other approach Martin David and I talked about would be to only lower the portions that require custom get/set state logic. This leaves the top level the same, and only specific backened internals are changed. Personally I'm not sure how much that really addresses the debugging concern all that well. It seems like if you cracked the model open you'd still run into similar amounts of confusion with a lot of the variables and logic referenced coming from another module.

The other concern with this approach is whether or not 'compile_spec' specifies the public api of the module (since thats our source of truth for this wrapper). While it may not be enforced, it certainly seems to be true by convention and the to_backend api already uses it as a source of truth for all functions that get generated in the resulting module. I say we just formally commit to this (compile spec keys being functions) being the contract of the api instead of just assuming it to be the case and then having weird behavior if its not.

Test Plan:
New Unit Test
CI to check for existing behavior and contracts.

manually tested in a notebook with bundled inputs.

{P475790313}

Reviewed By: raziel

Differential Revision: D33694257

fbshipit-source-id: 9ff27db421eba41bac083dff11a22e9e40a36970
(cherry picked from commit 91ef49977e)
2022-01-25 06:30:19 +00:00

758 lines
25 KiB
C++

#include <gtest/gtest.h>
#include <test/cpp/jit/test_utils.h>
#include <torch/csrc/jit/api/module.h>
#include <torch/csrc/jit/backends/backend_detail.h>
#include <torch/csrc/jit/mobile/import.h>
#include <torch/csrc/jit/serialization/import.h>
#include <torch/torch.h>
// Tests go in torch::jit
namespace torch {
namespace jit {
TEST(BackendTest, ToBackend) {
Module m("m");
m.define(R"(
def forward(self, x, h):
return self.accum(x, h), self.sub_accum(x, h)
def accum(self, x, h):
return x + h
def sub_accum(self, x, h):
return x - h
)");
std::vector<IValue> inputs;
inputs.emplace_back(2.0 * torch::ones({}));
inputs.emplace_back(1.0 * torch::ones({}));
auto ref = m.forward(inputs).toTupleRef().elements().vec();
c10::Dict<IValue, IValue> compile_spec(StringType::get(), AnyType::get());
c10::Dict<IValue, IValue> fake_dict(StringType::get(), AnyType::get());
fake_dict.insert("", "");
compile_spec.insert("forward", fake_dict);
auto any_dict_ty = DictType::create(StringType::get(), AnyType::get());
// lowered module
auto lm = torch::jit::detail::codegen_backend_module(
"test_backend", m, compile_spec, any_dict_ty);
// lowered module code:
/*
class test_backendLoweredModule(Module):
__parameters__ = []
__buffers__ = []
__processed_module : Any
__method_compile_spec : Dict[str, Any]
__backend : __torch__.torch.classes.__backends__.test_backend
__handles : Dict[str, Any]
def __create_backend(self: torch.jit.test_backendLoweredModule) -> None:
_0 =
__torch__.torch.classes.__backends__.test_backend.__new__(__torch__.torch.classes.__backends__.test_backend)
_1 = (_0).__init__()
self.__backend = _0
return None
def __getstate__(self: torch.jit.test_backendLoweredModule) ->
Tuple[Dict[str, Any], Any]: _2 = (self.__method_compile_spec,
self.__processed_module) return _2 def __setstate__(self:
torch.jit.test_backendLoweredModule, state: Tuple[Dict[str, Any], Any]) ->
None: self.__method_compile_spec = (state)[0] self.__processed_module =
(state)[1] _3 = (self).__create_backend() _4 =
(self.__backend).compile(self.__processed_module,
self.__method_compile_spec, ) self.__handles = _4 return None def
forward(self: torch.jit.test_backendLoweredModule, x: Tensor, h: Tensor) ->
Tuple[Tensor, Tensor]: _5 = uninitialized(Tensor) typed_inputs =
annotate(List[Any], [x, h]) _6 =
(self.__backend).execute((self.__handles)["forward"], typed_inputs, ) _7,
_8, = _6 _9 = isinstance(_7, Tensor) if _9: _10 = unchecked_cast(Tensor, _7)
else:
ops.prim.RaiseException("AssertionError: ")
_10 = _5
_11 = isinstance(_8, Tensor)
if _11:
_12 = unchecked_cast(Tensor, _8)
else:
ops.prim.RaiseException("AssertionError: ")
_12 = _5
return (_10, _12)
*/
auto res = lm.forward(inputs).toTupleRef().elements().vec();
AT_ASSERT(res[0].toTensor().equal(ref[0].toTensor()));
AT_ASSERT(res[1].toTensor().equal(ref[1].toTensor()));
}
TEST(BackendTest, ToBackendNotAvailable) {
Module m("m");
m.define(R"(
def forward(self, x, h):
return self.accum(x, h), self.sub_accum(x, h)
def accum(self, x, h):
return x + h
def sub_accum(self, x, h):
return x - h
)");
std::vector<IValue> inputs;
inputs.emplace_back(2.0 * torch::ones({}));
inputs.emplace_back(1.0 * torch::ones({}));
auto ref = m.forward(inputs).toTupleRef().elements().vec();
c10::Dict<IValue, IValue> compile_spec(StringType::get(), AnyType::get());
c10::Dict<IValue, IValue> fake_dict(StringType::get(), AnyType::get());
fake_dict.insert("", "");
compile_spec.insert("forward", fake_dict);
auto any_dict_ty = DictType::create(StringType::get(), AnyType::get());
// Produce lowered module (backend not available).
// Exception is not thrown at this point.
auto lm = torch::jit::detail::codegen_backend_module(
"test_backend_unavailable", m, compile_spec, any_dict_ty);
// Validate exception is thrown when trying to execute and
// the backend is not available.
ASSERT_THROWS_WITH_MESSAGE(
lm.forward(inputs).toTupleRef().elements(), "Backend is not available.");
}
TEST(BackendTest, TestCompiler) {
Module m("m");
m.define(R"(
def forward(self, x, h):
return x + h
)");
std::vector<IValue> inputs;
inputs.emplace_back(2.0 * torch::ones({}));
inputs.emplace_back(1.0 * torch::ones({}));
auto ref = m.forward(inputs);
c10::Dict<IValue, IValue> compile_spec(StringType::get(), AnyType::get());
c10::Dict<IValue, IValue> fake_dict(StringType::get(), AnyType::get());
fake_dict.insert("", "");
compile_spec.insert("forward", fake_dict);
auto any_dict_ty = DictType::create(StringType::get(), AnyType::get());
// lowered module
auto lm = torch::jit::detail::codegen_backend_module(
"backend_with_compiler_demo", m, compile_spec, any_dict_ty);
auto res = lm.forward(inputs);
AT_ASSERT(res.toTensor().equal(ref.toTensor()));
std::stringstream ss;
lm._save_for_mobile(ss);
auto mlm = _load_for_mobile(ss);
auto mres = mlm.forward(inputs);
AT_ASSERT(mres.toTensor().equal(ref.toTensor()));
}
TEST(BackendTest, TestComposite) {
c10::Dict<IValue, IValue> compile_spec(StringType::get(), AnyType::get());
c10::Dict<IValue, IValue> fake_dict(StringType::get(), AnyType::get());
fake_dict.insert("", "");
compile_spec.insert("forward", fake_dict);
auto any_dict_ty = DictType::create(StringType::get(), AnyType::get());
Module m_add("m_add");
m_add.define(R"(
def forward(self, x, y):
return x + y
)");
auto lm_add = torch::jit::detail::codegen_backend_module(
"backend_with_compiler_demo", m_add, compile_spec, any_dict_ty);
Module m_sub("m_sub");
m_sub.define(R"(
def forward(self, x, y):
return x - y
)");
auto lm_sub = torch::jit::detail::codegen_backend_module(
"backend_with_compiler_demo", m_sub, compile_spec, any_dict_ty);
Module c("C");
c.register_module("Add", lm_add);
c.register_module("Sub", lm_sub);
c.define(R"(
def forward(self, x, y):
return self.Add.forward(x, y) * self.Sub.forward(x, y)
)");
std::vector<IValue> inputs;
inputs.emplace_back(3.0 * torch::ones({}));
inputs.emplace_back(1.0 * torch::ones({}));
auto res_jit = c.forward(inputs);
std::stringstream ss;
c._save_for_mobile(ss);
auto mc = _load_for_mobile(ss);
auto res_mobile = mc.forward(inputs);
AT_ASSERT(res_jit.toTensor().equal(res_mobile.toTensor()));
}
Module getCompositeModuleWithSameNameSubModules() {
// Two submodules with same module name but different forward and other
// functions should be serialized and loaded correctly.
c10::Dict<IValue, IValue> compile_spec(StringType::get(), AnyType::get());
c10::Dict<IValue, IValue> fake_dict(StringType::get(), AnyType::get());
fake_dict.insert("", "");
compile_spec.insert("forward", fake_dict);
auto any_dict_ty = DictType::create(StringType::get(), AnyType::get());
Module sub1("m_add");
sub1.define(R"(
def forward(self, x, y):
return x + y
)");
auto lowered_sub1 = torch::jit::detail::codegen_backend_module(
"backend_with_compiler_demo", sub1, compile_spec, any_dict_ty);
Module sub2("m_add");
sub2.define(R"(
def forward(self, x, y):
return x - y
)");
auto lowered_sub2 = torch::jit::detail::codegen_backend_module(
"backend_with_compiler_demo", sub2, compile_spec, any_dict_ty);
Module c("C");
c.register_module("Add", lowered_sub1);
c.register_module("Sub", lowered_sub2);
c.define(R"(
def forward(self, a, b, s:int):
c = self.Add.forward(a, b)
d = self.Sub.forward(a, b)
y = s * (c * d)
return y
)");
return c;
}
TEST(BackendTest, TestCompositeWithSetStates) {
Module c = getCompositeModuleWithSameNameSubModules();
std::vector<IValue> inputs;
inputs.emplace_back(torch::ones({}));
inputs.emplace_back(3.0 * torch::ones({}));
inputs.emplace_back(3);
auto res_jit = c.forward(inputs);
std::stringstream ss;
c._save_for_mobile(ss);
auto mc = _load_for_mobile(ss);
auto res_mobile = mc.forward(inputs);
AT_ASSERT(res_jit.toTensor().equal(res_mobile.toTensor()));
}
TEST(BackendTest, TestConsistencyOfCompositeWithSetStates) {
Module c = getCompositeModuleWithSameNameSubModules();
std::vector<IValue> inputs;
inputs.emplace_back(torch::ones({}));
inputs.emplace_back(3.0 * torch::ones({}));
inputs.emplace_back(3);
std::stringstream ss, ss_resave;
c._save_for_mobile(ss);
auto mc = _load_for_mobile(ss);
auto res_mobile = mc.forward(inputs);
// check if the methods names are always the same
// by reloading the script module and saving it back as mobile
// The below checks ensure that the names of Methods
// and numerical outputs of mobile and reloaded mobile
// modules are same.
auto script_module_load = torch::jit::load(ss);
script_module_load._save_for_mobile(ss_resave);
auto mc_reload = _load_for_mobile(ss_resave);
auto res_mobile_reload = mc_reload.forward(inputs);
AT_ASSERT(res_mobile_reload.toTensor().equal(res_mobile.toTensor()));
auto mc_methods = mc.get_methods();
auto mc_reload_methods = mc_reload.get_methods();
std::vector<std::string> mc_method_qns, mc_reload_method_qns;
auto get_qual_name = [](mobile::Method method) -> std::string {
return method.function().qualname().qualifiedName();
};
std::transform(
mc_methods.begin(),
mc_methods.end(),
std::back_inserter(mc_method_qns),
get_qual_name);
std::transform(
mc_reload_methods.begin(),
mc_reload_methods.end(),
std::back_inserter(mc_reload_method_qns),
get_qual_name);
AT_ASSERT(std::equal(
mc_method_qns.begin(),
mc_method_qns.end(),
mc_reload_method_qns.begin()));
}
TEST(BackendTest, TestCompilerNotSupport) {
Module m("m");
m.define(R"(
def forward(self, x, h):
return x * h
)");
c10::Dict<IValue, IValue> compile_spec(StringType::get(), AnyType::get());
c10::Dict<IValue, IValue> fake_dict(StringType::get(), AnyType::get());
fake_dict.insert("", "");
compile_spec.insert("forward", fake_dict);
auto any_dict_ty = DictType::create(StringType::get(), AnyType::get());
// lowered module
ASSERT_THROWS_WITH_MESSAGE(
torch::jit::detail::codegen_backend_module(
"backend_with_compiler_demo", m, compile_spec, any_dict_ty),
"The node of aten::mul is not supported in this compiler. Source code:");
}
TEST(BackendTestDebugInfo, TestCompiler) {
Module m("m");
m.define(R"(
def forward(self, x, h):
return x + h
)");
std::vector<IValue> inputs;
inputs.emplace_back(torch::rand({2, 4}));
inputs.emplace_back(torch::rand({13, 9}));
c10::Dict<IValue, IValue> compile_spec(StringType::get(), AnyType::get());
c10::Dict<IValue, IValue> fake_dict(StringType::get(), AnyType::get());
fake_dict.insert("", "");
compile_spec.insert("forward", fake_dict);
auto any_dict_ty = DictType::create(StringType::get(), AnyType::get());
// lowered module
auto lm = torch::jit::detail::codegen_backend_module(
"backend_with_compiler_demo", m, compile_spec, any_dict_ty);
std::stringstream ss;
lm._save_for_mobile(ss, ExtraFilesMap(), true);
auto mlm = _load_for_mobile(ss);
std::string error_pattern = R"(
Module hierarchy:top(m)::<unknown>.__loweredModule__(m)::forward.aten::add
Traceback of TorchScript (most recent call last):
File "<string>", line 3, in <unknown>
def forward(self, x: Tensor, h: Tensor):
return self.__loweredModule__.forward(x, h)
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ <--- HERE
File "<string>", line 5, in forward
typed_inputs: List[Any] = [x, h, ]
if self.__backend.is_available() :
_0, = self.__backend.execute(self.__handles["forward"], typed_inputs)
~~~~~~~~~~~~~~~~~~~~~~ <--- HERE
assert isinstance(_0, Tensor)
return _0
File "<string>", line 3, in <unknown>
def forward(self, x, h):
return x + h
~~~~~ <--- HERE
)";
ASSERT_THROWS_WITH_MESSAGE(mlm.forward(inputs), error_pattern);
}
TEST(BackendTestDebugInfo, TestExceptionStackForCompilerWithModuleHierarchy) {
Module a("A");
a.define(R"(
def forward(self, x, y):
return x + y
)");
Module b("B");
b.define(R"(
def forward(self, x):
return x + 2
)");
Module c("C");
c.register_module("A0", a);
c.register_module("B0", b);
c.define(R"(
def forward(self, x, y):
return self.A0.forward(x, y) + self.B0.forward(x)
)");
std::vector<IValue> inputs;
inputs.emplace_back(torch::rand({2, 4}));
inputs.emplace_back(torch::rand({13, 9}));
c10::Dict<IValue, IValue> compile_spec(StringType::get(), AnyType::get());
c10::Dict<IValue, IValue> fake_dict(StringType::get(), AnyType::get());
fake_dict.insert("", "");
compile_spec.insert("forward", fake_dict);
auto any_dict_ty = DictType::create(StringType::get(), AnyType::get());
// lowered module
auto lm = torch::jit::detail::codegen_backend_module(
"backend_with_compiler_demo", c, compile_spec, any_dict_ty);
std::stringstream ss;
lm._save_for_mobile(ss, ExtraFilesMap(), true);
auto mlm = _load_for_mobile(ss);
std::string error_pattern = R"(
Module hierarchy:top(C)::<unknown>.__loweredModule__(C)::forward.A0(A)::forward.aten::add
Traceback of TorchScript (most recent call last):
File "<string>", line 3, in <unknown>
def forward(self, x: Tensor, y: Tensor):
return self.__loweredModule__.forward(x, y)
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ <--- HERE
File "<string>", line 5, in forward
typed_inputs: List[Any] = [x, y, ]
if self.__backend.is_available() :
_0, = self.__backend.execute(self.__handles["forward"], typed_inputs)
~~~~~~~~~~~~~~~~~~~~~~ <--- HERE
assert isinstance(_0, Tensor)
return _0
File "<string>", line 3, in <unknown>
def forward(self, x, y):
return self.A0.forward(x, y) + self.B0.forward(x)
~~~~~~~~~~~~~~~ <--- HERE
File "<string>", line 3, in forward
def forward(self, x, y):
return x + y
~~~~~ <--- HERE
)";
ASSERT_THROWS_WITH_MESSAGE(mlm.forward(inputs), error_pattern);
}
TEST(
BackendTestDebugInfo,
TestExceptionStackForCompilerWithTwoLevelModuleHierarchy) {
Module a("A");
a.define(R"(
def forward(self, x, y):
return x + y
)");
Module b("B");
b.register_module("A0", a);
b.define(R"(
def forward(self, x, y):
return self.A0.forward(x, y) + 2
)");
Module c("C");
c.register_module("B0", b);
c.define(R"(
def forward(self, x, y):
return self.B0.forward(x, y) + 3
)");
std::vector<IValue> inputs;
inputs.emplace_back(torch::rand({2, 4}));
inputs.emplace_back(torch::rand({13, 9}));
c10::Dict<IValue, IValue> compile_spec(StringType::get(), AnyType::get());
c10::Dict<IValue, IValue> fake_dict(StringType::get(), AnyType::get());
fake_dict.insert("", "");
compile_spec.insert("forward", fake_dict);
auto any_dict_ty = DictType::create(StringType::get(), AnyType::get());
// lowered module
auto lm = torch::jit::detail::codegen_backend_module(
"backend_with_compiler_demo", c, compile_spec, any_dict_ty);
std::stringstream ss;
lm._save_for_mobile(ss, ExtraFilesMap(), true);
auto mlm = _load_for_mobile(ss);
/*
* Error stack throw will look like this:
* Module hierarchy:top(backend_with_compiler_demoLoweredModule).B0(B).A0(A)
* Traceback of TorchScript (most recent call last):
* File "<string>", line 5, in FunctionName_UNKNOWN
* typed_inputs: List[Any] = [x, y, ]
* if self.__backend.is_available() :
* _0, = self.__backend.execute(self.__handles["forward"],
* typed_inputs)
* ~~~~~~~~~~~~~~~~~~~~~~ <--- HERE
* assert isinstance(_0, Tensor)
* return _0
* File "<string>", line 3, in FunctionName_UNKNOWN
*
* def forward(self, x, y):
* return self.B0.forward(x, y) + 3
* ~~~~~~~~~~~~~~~ <--- HERE
*
* File "<string>", line 3, in FunctionName_UNKNOWN
*
* def forward(self, x, y):
* return self.A0.forward(x, y) + 2
* ~~~~~~~~~~~~~~~ <--- HERE
*
* File "<string>", line 3, in FunctionName_UNKNOWN
*
* def forward(self, x, y):
* return x + y
* ~~~~~ <--- HERE
*
*/
std::string error_pattern = R"(
Module hierarchy:top(C)::<unknown>.__loweredModule__(C)::forward.B0(B)::forward.A0(A)::forward.aten::add
Traceback of TorchScript (most recent call last):
File "<string>", line 3, in <unknown>
def forward(self, x: Tensor, y: Tensor):
return self.__loweredModule__.forward(x, y)
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ <--- HERE
File "<string>", line 5, in forward
typed_inputs: List[Any] = [x, y, ]
if self.__backend.is_available() :
_0, = self.__backend.execute(self.__handles["forward"], typed_inputs)
~~~~~~~~~~~~~~~~~~~~~~ <--- HERE
assert isinstance(_0, Tensor)
return _0
File "<string>", line 3, in <unknown>
def forward(self, x, y):
return self.B0.forward(x, y) + 3
~~~~~~~~~~~~~~~ <--- HERE
File "<string>", line 3, in forward
def forward(self, x, y):
return self.A0.forward(x, y) + 2
~~~~~~~~~~~~~~~ <--- HERE
File "<string>", line 3, in forward
def forward(self, x, y):
return x + y
~~~~~ <--- HERE
)";
ASSERT_THROWS_WITH_MESSAGE(mlm.forward(inputs), error_pattern);
}
TEST(BackendTestDebugInfo, TestExceptionStackForCompilerWithLoweredSubModule) {
std::shared_ptr<CompilationUnit> cu = std::make_shared<CompilationUnit>();
Module a("A");
a.define(R"(
def forward(self, x, y):
return x + y
)");
Module b("B");
b.define(R"(
def forward(self, x):
return x + 2
)");
Module c("C");
c.register_module("A0", a);
c.register_module("B0", b);
c.define(R"(
def forward(self, x, y):
return self.A0.forward(x, y) + self.B0.forward(x)
)");
std::vector<IValue> inputs;
inputs.emplace_back(torch::rand({2, 4}));
inputs.emplace_back(torch::rand({13, 9}));
c10::Dict<IValue, IValue> compile_spec(StringType::get(), AnyType::get());
c10::Dict<IValue, IValue> fake_dict(StringType::get(), AnyType::get());
fake_dict.insert("", "");
compile_spec.insert("forward", fake_dict);
IValue submodule = c.attr("A0");
Module current_sm = submodule.toModule();
auto any_dict_ty = DictType::create(StringType::get(), AnyType::get());
// lowered module
auto lowered_submodule = torch::jit::detail::codegen_backend_module(
"backend_with_compiler_demo", current_sm, compile_spec, any_dict_ty);
c.type()->unsafeChangeAttributeType("A0", lowered_submodule.type());
c.setattr("A0", lowered_submodule._ivalue());
std::unordered_map<TypePtr, TypePtr> type_remap;
type_remap[a.type()] = lowered_submodule.type();
auto type_remap_fn = [&type_remap](TypePtr in) {
auto it = type_remap.find(in);
if (it == type_remap.end())
return in;
return it->second;
};
for (auto& fn : c.type()->methods()) {
auto method = c.get_method(fn->name());
auto graph = method.graph();
graph->remapTypes(type_remap_fn);
auto new_schema = fn->getSchema().cloneWithRemappedTypes(type_remap_fn);
fn->setSchema(new_schema);
}
std::stringstream ss;
c._save_for_mobile(ss, ExtraFilesMap(), true);
auto c_loaded = _load_for_mobile(ss);
std::string error_pattern = R"(
Module hierarchy:top(C)::<unknown>.A0(A)::forward.__loweredModule__(A)::forward.aten::add
Traceback of TorchScript (most recent call last):
File "<string>", line 3, in <unknown>
def forward(self, x, y):
return self.A0.forward(x, y) + self.B0.forward(x)
~~~~~~~~~~~~~~~ <--- HERE
File "<string>", line 3, in forward
def forward(self, x: Tensor, y: Tensor):
return self.__loweredModule__.forward(x, y)
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ <--- HERE
File "<string>", line 5, in forward
typed_inputs: List[Any] = [x, y, ]
if self.__backend.is_available() :
_0, = self.__backend.execute(self.__handles["forward"], typed_inputs)
~~~~~~~~~~~~~~~~~~~~~~ <--- HERE
assert isinstance(_0, Tensor)
return _0
File "<string>", line 3, in <unknown>
def forward(self, x, y):
return x + y
~~~~~ <--- HERE
)";
ASSERT_THROWS_WITH_MESSAGE(c_loaded.forward(inputs), error_pattern);
}
TEST(
BackendTestDebugInfo,
TestExceptionStackForCompilerWithSelectiveLoweredSubModule) {
std::shared_ptr<CompilationUnit> cu = std::make_shared<CompilationUnit>();
Module aa("AA");
aa.define(R"(
def forward(self, x, y):
return x + y
)");
Module a("A");
a.register_module("AA0", aa);
a.define(R"(
def forward(self, x, y):
return self.AA0.forward(x, y) + 3
)");
Module b("B");
b.define(R"(
def forward(self, x):
return x + 2
)");
Module c("C");
c.register_module("A0", a);
c.register_module("B0", b);
c.define(R"(
def forward(self, x, y):
return self.A0.forward(x, y) + self.B0.forward(x)
)");
std::vector<IValue> inputs;
inputs.emplace_back(torch::rand({2, 4}));
inputs.emplace_back(torch::rand({13, 9}));
c10::Dict<IValue, IValue> compile_spec(StringType::get(), AnyType::get());
c10::Dict<IValue, IValue> fake_dict(StringType::get(), AnyType::get());
fake_dict.insert("", "");
compile_spec.insert("forward", fake_dict);
IValue submodule = c.attr("A0");
Module current_sm = submodule.toModule();
auto any_dict_ty = DictType::create(StringType::get(), AnyType::get());
// lowered module
auto lowered_submodule = torch::jit::detail::codegen_backend_module(
"backend_with_compiler_demo", current_sm, compile_spec, any_dict_ty);
c.type()->unsafeChangeAttributeType("A0", lowered_submodule.type());
c.setattr("A0", lowered_submodule._ivalue());
std::unordered_map<TypePtr, TypePtr> type_remap;
type_remap[a.type()] = lowered_submodule.type();
auto type_remap_fn = [&type_remap](TypePtr in) {
auto it = type_remap.find(in);
if (it == type_remap.end())
return in;
return it->second;
};
for (auto& fn : c.type()->methods()) {
auto method = c.get_method(fn->name());
auto graph = method.graph();
graph->remapTypes(type_remap_fn);
auto new_schema = fn->getSchema().cloneWithRemappedTypes(type_remap_fn);
fn->setSchema(new_schema);
}
std::stringstream ss;
c._save_for_mobile(ss, ExtraFilesMap(), true);
auto c_loaded = _load_for_mobile(ss);
/*
* Erro stack trace will look like this:
* Module hierarchy:top(C).A0(backend_with_compiler_demoLoweredModule).AA0(AA)
* Traceback of TorchScript (most recent call last):
* File "<string>", line 3, in FunctionName_UNKNOWN
*
* def forward(self, x, y):
* return self.A0.forward(x, y) + self.B0.forward(x)
* ~~~~~~~~~~~~~~~ <--- HERE
*
* File "<string>", line 5, in FunctionName_UNKNOWN
* typed_inputs: List[Any] = [x, y, ]
* if self.__backend.is_available() :
* _0, = self.__backend.execute(self.__handles["forward"],
* typed_inputs)
* ~~~~~~~~~~~~~~~~~~~~~~ <--- HERE
* assert isinstance(_0, Tensor)
* return _0
* File "<string>", line 3, in FunctionName_UNKNOWN
*
* def forward(self, x, y):
* return self.AA0.forward(x, y) + 3
* ~~~~~~~~~~~~~~~~ <--- HERE
*
* File "<string>", line 3, in FunctionName_UNKNOWN
*
* def forward(self, x, y):
* return x + y
* ~~~~~ <--- HERE
*
*
* */
std::string error_pattern = R"(
Module hierarchy:top(C)::<unknown>.A0(A)::forward.__loweredModule__(A)::forward.AA0(AA)::forward.aten::add
Traceback of TorchScript (most recent call last):
File "<string>", line 3, in <unknown>
def forward(self, x, y):
return self.A0.forward(x, y) + self.B0.forward(x)
~~~~~~~~~~~~~~~ <--- HERE
File "<string>", line 3, in forward
def forward(self, x: Tensor, y: Tensor):
return self.__loweredModule__.forward(x, y)
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ <--- HERE
File "<string>", line 5, in forward
typed_inputs: List[Any] = [x, y, ]
if self.__backend.is_available() :
_0, = self.__backend.execute(self.__handles["forward"], typed_inputs)
~~~~~~~~~~~~~~~~~~~~~~ <--- HERE
assert isinstance(_0, Tensor)
return _0
File "<string>", line 3, in <unknown>
def forward(self, x, y):
return self.AA0.forward(x, y) + 3
~~~~~~~~~~~~~~~~ <--- HERE
File "<string>", line 3, in forward
def forward(self, x, y):
return x + y
~~~~~ <--- HERE
)";
ASSERT_THROWS_WITH_MESSAGE(c_loaded.forward(inputs), error_pattern);
}
} // namespace jit
} // namespace torch