mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-06 12:20:52 +01:00
Originally, when these were written, they simply used the naive strategy of "upcast all inputs to floats, and downcast all inputs back". In addition to being... not quite what the kernels did, they also didn't capture some additional semantics. Namely, that the norms (except for layer norm on CPU! cc: @ngimel) return fp32 for the mean and rstd values. Also, folks didn't like that I wrote `native_layer_norm` in terms of `native_batch_norm`. Which is fair - so I refactored the common logic into a `normalize` function. cc: @jansel / @bertmaher , who've been looking at lowering layer norm/batch norm. Pull Request resolved: https://github.com/pytorch/pytorch/pull/77407 Approved by: https://github.com/bertmaher
506 lines
18 KiB
Python
506 lines
18 KiB
Python
# Owner(s): ["module: primTorch"]
|
|
|
|
from collections import defaultdict
|
|
from torch import Tensor
|
|
import torch.autograd
|
|
from torch.utils._python_dispatch import enable_torch_dispatch_mode
|
|
from torch._decomp import decomposition_table
|
|
|
|
from torch.utils._pytree import tree_map, tree_flatten, tree_unflatten
|
|
from torch.testing._internal.logging_tensor import no_dispatch
|
|
from torch.testing._internal.common_utils import (
|
|
is_iterable_of_tensors,
|
|
TestCase,
|
|
skipIfCrossRef,
|
|
suppress_warnings,
|
|
TEST_WITH_ASAN,
|
|
run_tests,
|
|
)
|
|
from torch.testing._internal.common_device_type import (
|
|
onlyNativeDeviceTypes,
|
|
ops,
|
|
instantiate_device_type_tests,
|
|
)
|
|
from torch.testing._internal.common_methods_invocations import op_db
|
|
|
|
import itertools
|
|
import functools
|
|
from functools import partial
|
|
import unittest
|
|
|
|
aten = torch.ops.aten
|
|
|
|
|
|
# TODO: this isn't going to work with non-aten namespaces
|
|
def overload_to_aten_name(overload):
|
|
return overload._schema.name.split("::")[1]
|
|
|
|
|
|
# All operators that can have decomp tests
|
|
decomposition_names = {overload_to_aten_name(k) for k in decomposition_table}
|
|
_decomp_test_ops = [
|
|
op
|
|
for op in op_db
|
|
if op.aten_name in decomposition_names
|
|
or op.aten_backward_name in decomposition_names
|
|
]
|
|
|
|
|
|
def diff_arg(arg, requires_grad=True):
|
|
def is_differentiable_arg(arg):
|
|
if requires_grad:
|
|
return arg.requires_grad
|
|
else:
|
|
return arg.is_floating_point() or arg.is_complex()
|
|
|
|
if is_iterable_of_tensors(arg):
|
|
if all([is_differentiable_arg(a) for a in arg]):
|
|
return True
|
|
if all([not is_differentiable_arg(a) for a in arg]):
|
|
return False
|
|
raise RuntimeError("NYI: The test runner can't handle this")
|
|
return isinstance(arg, Tensor) and is_differentiable_arg(arg)
|
|
|
|
|
|
# Version of autograd.grad with some differences:
|
|
# - pytree inputs is allowed (but leaves of the pytree have to all
|
|
# be tensors)
|
|
# - if an input is not used as part of derivatives, we will return a
|
|
# zero-filled tensor for the result
|
|
def _autograd_grad(
|
|
outputs, inputs, grad_outputs=None, retain_graph=False, create_graph=True
|
|
):
|
|
inputs, inputs_spec = tree_flatten(inputs)
|
|
diff_inputs = tuple(inp for inp in inputs if inp.requires_grad)
|
|
if grad_outputs is None:
|
|
diff_outputs = tuple(out for out in outputs if out.requires_grad)
|
|
else:
|
|
diff_grad_outputs = [
|
|
(out, go) for out, go in zip(outputs, grad_outputs) if out.requires_grad
|
|
]
|
|
if len(diff_grad_outputs) == 0:
|
|
diff_outputs, grad_outputs = (), ()
|
|
else:
|
|
diff_outputs, grad_outputs = zip(*diff_grad_outputs)
|
|
grad_inputs = torch.autograd.grad(
|
|
diff_outputs,
|
|
diff_inputs,
|
|
grad_outputs,
|
|
retain_graph=retain_graph,
|
|
create_graph=create_graph,
|
|
allow_unused=True,
|
|
)
|
|
result = []
|
|
grad_inputs_iter = iter(grad_inputs)
|
|
for inp in inputs:
|
|
if inp.requires_grad:
|
|
grad_input = next(grad_inputs_iter)
|
|
if grad_input is None:
|
|
result.append(torch.zeros_like(inp))
|
|
else:
|
|
result.append(grad_input)
|
|
else:
|
|
result.append(torch.zeros_like(inp))
|
|
return tree_unflatten(result, inputs_spec)
|
|
|
|
|
|
def _as_tuple(val):
|
|
if isinstance(val, tuple):
|
|
return val
|
|
return (val,)
|
|
|
|
|
|
def ref_vjp_no_create(f, *primals):
|
|
result = f(*primals)
|
|
|
|
def wrapped(cotangents):
|
|
return _autograd_grad(
|
|
_as_tuple(result), primals, _as_tuple(cotangents), create_graph=False
|
|
)
|
|
|
|
return result, wrapped
|
|
|
|
|
|
dtype_precisions = {
|
|
torch.float16: (0.001, 1e-5),
|
|
torch.bfloat16: (0.016, 1e-4),
|
|
torch.float32: (1.3e-6, 1e-5),
|
|
torch.float64: (1e-7, 1e-7),
|
|
torch.complex32: (0.001, 1e-5),
|
|
torch.complex64: (1.3e-6, 1e-5),
|
|
torch.complex128: (1e-7, 1e-7),
|
|
}
|
|
# Returns the "default" rtol and atol for comparing scalars or
|
|
# tensors of the given dtypes.
|
|
|
|
|
|
def _getDefaultRtolAndAtol(dtype0, dtype1):
|
|
rtol = max(
|
|
dtype_precisions.get(dtype0, (0, 0))[0], dtype_precisions.get(dtype1, (0, 0))[0]
|
|
)
|
|
atol = max(
|
|
dtype_precisions.get(dtype0, (0, 0))[1], dtype_precisions.get(dtype1, (0, 0))[1]
|
|
)
|
|
return rtol, atol
|
|
|
|
|
|
def op_assert_ref(test_case, op, test_dtype, orig, decomp, ref, args, kwargs):
|
|
assert orig.dtype == decomp.dtype, f"Operation: {op}"
|
|
if orig.numel() == 0 or decomp.numel() == 0:
|
|
assert orig.numel() == decomp.numel()
|
|
return
|
|
assert orig.shape == decomp.shape, f"Operation: {op}"
|
|
tol_table = {
|
|
(torch.bfloat16, torch.ops.aten.native_layer_norm.default): 1e-5,
|
|
(torch.float16, torch.ops.aten.native_layer_norm.default): 1e-5,
|
|
(torch.bfloat16, torch.ops.aten.native_batch_norm.default): 1e-5,
|
|
(torch.float16, torch.ops.aten.native_batch_norm.default): 1e-5,
|
|
}
|
|
if ref.is_floating_point():
|
|
orig_diff = (orig - ref).abs().max()
|
|
decomp_diff = (decomp - ref).abs().max()
|
|
atol = tol_table.get((test_dtype, op), 1e-7)
|
|
if decomp_diff > orig_diff + atol:
|
|
raise RuntimeError(
|
|
f"Difference from float64 is larger with decomposition {op.__name__}"
|
|
f" than original. Original max diff: {orig_diff}, Decomp max diff: {decomp_diff}\n"
|
|
f"atol = {atol}\n"
|
|
f"args = {args}\n"
|
|
f"kwargs = {kwargs}"
|
|
)
|
|
else:
|
|
test_case.assertEqual(
|
|
orig, decomp, msg=f"{op.__name__}\nargs = {args}\nkwargs = {kwargs}"
|
|
)
|
|
|
|
|
|
def op_assert_equal(test_case, op, test_dtype, orig, decomp, args, kwargs):
|
|
test_case.assertEqual(
|
|
orig.dtype, decomp.dtype, f"Operation: {op}, orig.dtype: {orig.dtype}, decomp.dtype: {decomp.dtype}, {args}, {kwargs}")
|
|
# Before adding an entry to this table, make sure your decomposition is right :)
|
|
tol_table = {
|
|
# Due to strange epsilon behaviors, see https://github.com/pytorch/pytorch/issues/73161
|
|
(torch.float32, torch.ops.aten.native_layer_norm.default): (1e-3, 1e-3),
|
|
(torch.float32, torch.ops.aten.native_layer_norm_backward.default): (
|
|
1e-3,
|
|
1e-3,
|
|
),
|
|
}
|
|
if (test_dtype, op) in tol_table:
|
|
rtol, atol = tol_table[(decomp.dtype, op)]
|
|
else:
|
|
rtol, atol = _getDefaultRtolAndAtol(orig.dtype, decomp.dtype)
|
|
|
|
test_case.assertEqual(orig, decomp, rtol=rtol, atol=atol, msg=f"{op.__name__}\nargs = {args}\nkwargs = {kwargs}")
|
|
|
|
|
|
# Given f, returns an f' such that:
|
|
# - f' takes only positional arguments
|
|
# - All arguments to f' are floating-point Tensors
|
|
# - All outputs of f' are floating-point Tensors
|
|
def normalize_op_input_output2(
|
|
f, args, kwargs, output_process_fn_grad=None, requires_grad=True
|
|
):
|
|
flat_args, args_spec = tree_flatten(args)
|
|
diff_argnums = tuple(
|
|
i
|
|
for i, arg in enumerate(flat_args)
|
|
if diff_arg(arg, requires_grad=requires_grad)
|
|
)
|
|
assert len(diff_argnums) > 0
|
|
primals = tuple(flat_args[i] for i in diff_argnums)
|
|
|
|
@functools.wraps(f)
|
|
def wrapped(*primals):
|
|
_args = list(flat_args)
|
|
for num, arg in zip(diff_argnums, primals):
|
|
_args[num] = arg
|
|
_args = tree_unflatten(_args, args_spec)
|
|
result = f(*_args, **kwargs)
|
|
if output_process_fn_grad is not None:
|
|
result = output_process_fn_grad(result)
|
|
if isinstance(result, tuple):
|
|
# TODO: Remove the following hack for namedtuples
|
|
result = tuple(result)
|
|
result = tuple(
|
|
r
|
|
for r in result
|
|
if isinstance(r, Tensor) and (r.is_floating_point() or r.is_complex())
|
|
)
|
|
assert len(result) > 0
|
|
return result
|
|
|
|
return wrapped, primals
|
|
|
|
|
|
# NB: This also upcasts dtype arguments
|
|
|
|
|
|
def upcast_tensor(func, x, dtype=torch.float32):
|
|
# Some functions take a dtype as argument, so we need to
|
|
# manually change that dtype in order to run it with a
|
|
# higher precision
|
|
dtype_arg_table = {
|
|
torch.ops.aten._softmax_backward_data.default,
|
|
torch.ops.aten._log_softmax_backward_data.default,
|
|
}
|
|
|
|
if isinstance(x, Tensor) and x.dtype.is_floating_point:
|
|
return x.to(dtype=dtype)
|
|
elif (
|
|
isinstance(x, torch.dtype)
|
|
and func in dtype_arg_table
|
|
and x in [torch.float16, torch.bfloat16]
|
|
):
|
|
return torch.float64
|
|
else:
|
|
return x
|
|
|
|
|
|
def normalize_op_input_output(f, sample, requires_grad=True):
|
|
args = tuple([sample.input] + list(sample.args))
|
|
return normalize_op_input_output2(
|
|
f,
|
|
args,
|
|
sample.kwargs,
|
|
sample.output_process_fn_grad,
|
|
requires_grad=requires_grad,
|
|
)
|
|
|
|
|
|
CROSS_REF_EXCLUDE_SET = {
|
|
# CUBLAS_STATUS_NOT_SUPPORTED when calling
|
|
# `cublasGemmStridedBatchedExFix(handle, opa, opb, (int)m, (int)n, (int)k,
|
|
# (void*)&falpha, a, CUDA_R_16BF, (int)lda, stridea, b, CUDA_R_16BF,
|
|
# (int)ldb, strideb, (void*)&fbeta, c, CUDA_R_16BF, (int)ldc, stridec,
|
|
# (int)num_batches, CUDA_R_32F, CUBLAS_GEMM_DEFAULT_TENSOR_OP)`
|
|
("cuda", torch.bfloat16, "nn.functional.bilinear"),
|
|
# randomness
|
|
("cuda", torch.float16, "nn.functional.dropout"),
|
|
("cuda", torch.bfloat16, "nn.functional.dropout"),
|
|
("cuda", torch.float64, "nn.functional.dropout"),
|
|
("cuda", torch.float32, "nn.functional.dropout"),
|
|
# decomp has problem even with opmath
|
|
# doesn't work
|
|
("cuda", torch.bfloat16, "nn.functional.embedding"),
|
|
|
|
}
|
|
|
|
all_decomposed = set()
|
|
all_called = defaultdict(int)
|
|
|
|
# Helpful snippet for testing coverage
|
|
"""
|
|
import atexit
|
|
def check_coverage():
|
|
print("missing coverage:")
|
|
print("\n".join(map(str, decomposition_table.keys() - all_decomposed)))
|
|
atexit.register(check_coverage)
|
|
"""
|
|
|
|
# Helpful snippet for Horace to create his google sheet :)
|
|
"""
|
|
import atexit
|
|
def dump_ops():
|
|
with open('run_ops.txt', 'w') as f, open('count_ops.txt', 'w') as g:
|
|
for op, count in sorted(all_called.items(), key=lambda x: x[0].__name__):
|
|
f.write(f'{op.__name__}\n')
|
|
g.write(f'{count}\n')
|
|
with open('run_decompositions.txt', 'w') as f:
|
|
for op in sorted([i.__name__ for i in all_decomposed]):
|
|
f.write(f'{op}\n')
|
|
|
|
atexit.register(dump_ops)
|
|
"""
|
|
|
|
|
|
def any_unsupported(args, kwargs):
|
|
def test_unsupported(t):
|
|
if type(t) is torch.Tensor or type(t) is torch.nn.Parameter:
|
|
# These are all things that we haven't coded decompositions
|
|
# to handle correctly. Maybe they should.
|
|
return any([
|
|
t.is_sparse_csr, t.is_sparse, t.is_mkldnn, t.is_quantized,
|
|
t.is_nested, torch._is_functional_tensor(t),
|
|
])
|
|
elif torch.overrides.is_tensor_like(t):
|
|
# Decompositions will generally change the behavior of Tensor-like
|
|
# subclasses, so bypass tests in this case too
|
|
return True
|
|
else:
|
|
return False
|
|
|
|
flat_args, _ = tree_flatten(args)
|
|
flat_kwargs, _ = tree_flatten(kwargs)
|
|
return any(test_unsupported(x) for x in itertools.chain(flat_args, flat_kwargs))
|
|
|
|
|
|
class TestDecomp(TestCase):
|
|
longMessage = True
|
|
|
|
# NB: This actually overlaps with test_comprehensive, but it only
|
|
# runs on things that are definitely decomposed so it's a lot faster
|
|
# to run
|
|
@unittest.skipIf(TEST_WITH_ASAN, "Skipped under ASAN")
|
|
@onlyNativeDeviceTypes
|
|
@skipIfCrossRef
|
|
@suppress_warnings
|
|
@ops(_decomp_test_ops)
|
|
def test_quick(self, device, dtype, op):
|
|
self.do_cross_ref(device, dtype, op, run_all=False)
|
|
|
|
@unittest.skipIf(TEST_WITH_ASAN, "Skipped under ASAN")
|
|
@onlyNativeDeviceTypes
|
|
@skipIfCrossRef
|
|
@suppress_warnings
|
|
@ops(op_db)
|
|
def test_comprehensive(self, device, dtype, op):
|
|
self.do_cross_ref(device, dtype, op, run_all=True)
|
|
|
|
def do_cross_ref(self, device, dtype, op, *, run_all):
|
|
if (torch.device(device).type, dtype, op.name) in CROSS_REF_EXCLUDE_SET or (
|
|
None,
|
|
dtype,
|
|
op.name,
|
|
) in CROSS_REF_EXCLUDE_SET:
|
|
self.skipTest(f"{op.name} in {dtype} not supported")
|
|
|
|
test_dtype = dtype
|
|
|
|
# We check the correctness of each decomposition right after running it.
|
|
# So, when we encounter a decomposition, we run the function normally, and
|
|
# then run the decomposition, and ensure they're identical.
|
|
called = set()
|
|
decomposed = set()
|
|
|
|
saved_precision = self.precision
|
|
saved_rel_tol = self.rel_tol
|
|
|
|
class DecompCrossRefMode(torch.Tensor):
|
|
@classmethod
|
|
def __torch_dispatch__(cls, func, types, args=(), kwargs=None):
|
|
with no_dispatch():
|
|
return cls._torch_dispatch(func, types, args, kwargs)
|
|
|
|
@classmethod
|
|
def _torch_dispatch(cls, func, types, args=(), kwargs=None):
|
|
self.precision = saved_precision
|
|
self.rel_tol = saved_rel_tol
|
|
|
|
called.add(func)
|
|
all_called[func] += 1
|
|
|
|
# Stuff we shouldn't bother testing
|
|
# (TODO: remove detach from the decomp table?)
|
|
if func not in decomposition_table or func in [
|
|
torch.ops.aten.detach.default
|
|
] or any_unsupported(args, kwargs):
|
|
return func(*args, **kwargs)
|
|
|
|
decomposed.add(func)
|
|
all_decomposed.add(func)
|
|
|
|
# We take 2 main strategies for verifying correctness/numerical stability of decompositions
|
|
# The first one is simply tolerance checking between decomp_out and pytorch_out
|
|
# However, for fp16/bf16 and reductions, this becomes very
|
|
# finicky, as there are not many guarantees we can make.
|
|
# So, for fp16/bf16, we instead compare the difference of
|
|
# {decomp_out, pytorch_out_64} and {pytorch_out,
|
|
# pytorch_out_64}. In other words, we compare how far the
|
|
# decomposition and pytorch are from the "ground truth" (i.e.
|
|
# fp64). If the decomposition results in more error, we error
|
|
|
|
decomposition = decomposition_table[func]
|
|
|
|
do_relative_check = test_dtype in [torch.float16, torch.bfloat16]
|
|
real_out_unflat = func(*args, **kwargs)
|
|
real_out, _ = tree_flatten(real_out_unflat)
|
|
decomp_out, _ = tree_flatten(decomposition(*args, **kwargs))
|
|
assert len(real_out) == len(decomp_out)
|
|
|
|
if do_relative_check:
|
|
upcast = partial(upcast_tensor, func, dtype=torch.float64)
|
|
real_out_double, _ = tree_flatten(
|
|
func(*tree_map(upcast, args), **tree_map(upcast, kwargs))
|
|
)
|
|
for orig, decomp, ref in zip(real_out, decomp_out, real_out_double):
|
|
if orig is None:
|
|
assert decomp is None
|
|
continue
|
|
op_assert_ref(self, func, test_dtype, orig, decomp, ref, args, kwargs)
|
|
else:
|
|
for orig, decomp in zip(real_out, decomp_out):
|
|
if orig is None:
|
|
assert decomp is None
|
|
continue
|
|
op_assert_equal(self, func, test_dtype, orig, decomp, args, kwargs)
|
|
|
|
return real_out_unflat
|
|
|
|
requires_grad = (
|
|
op.supports_autograd
|
|
and dtype in op.supported_backward_dtypes(torch.device(device).type)
|
|
# TODO: OpInfo really ought to error out for this case, but it's
|
|
# not exercised in test_ops_gradients atm. The problem is not
|
|
# complex32 per-se (which is supported by data movement only ops)
|
|
# but that when we do backwards we expect other ops like add to work
|
|
and not dtype == torch.complex32
|
|
)
|
|
samples = op.sample_inputs(device, test_dtype, requires_grad=requires_grad)
|
|
|
|
def check_decomposed(aten_name):
|
|
self.assertTrue(
|
|
any(overload_to_aten_name(c) == aten_name for c in decomposed),
|
|
msg=f"aten.{aten_name} was not decomposed, saw calls for: "
|
|
+ ", ".join(map(str, list(called))),
|
|
)
|
|
|
|
aten_name = op.decomp_aten_name or op.aten_name
|
|
|
|
func = op.get_op()
|
|
for sample_input in samples:
|
|
if requires_grad:
|
|
fn, primals = normalize_op_input_output(func, sample_input)
|
|
primals = tree_map(
|
|
lambda x: x if isinstance(x, torch.Tensor) else x, primals
|
|
)
|
|
|
|
# Once https://github.com/pytorch/pytorch/pull/75965/ I can
|
|
# store the called list on the mode object instance and no
|
|
# explicit clearing is necessary as I will create a fresh mode
|
|
# for each region
|
|
decomposed.clear()
|
|
with enable_torch_dispatch_mode(DecompCrossRefMode):
|
|
decomp_out, decomp_vjp_fn = ref_vjp_no_create(fn, *primals)
|
|
if aten_name in decomposition_names:
|
|
check_decomposed(aten_name)
|
|
|
|
if op.aten_backward_name in decomposition_names or run_all:
|
|
cotangents = tree_map(lambda x: torch.randn_like(x), decomp_out)
|
|
|
|
decomposed.clear()
|
|
with enable_torch_dispatch_mode(DecompCrossRefMode):
|
|
decomp_vjp_fn(cotangents)
|
|
if not run_all:
|
|
check_decomposed(op.aten_backward_name)
|
|
|
|
elif aten_name in decomposition_names or run_all:
|
|
args = [sample_input.input] + list(sample_input.args)
|
|
kwargs = sample_input.kwargs
|
|
decomposed.clear()
|
|
with enable_torch_dispatch_mode(DecompCrossRefMode):
|
|
func(*args, **kwargs)
|
|
if not run_all:
|
|
check_decomposed(aten_name)
|
|
else:
|
|
assert op.supports_autograd
|
|
self.skipTest(
|
|
"only backwards is decomposed, but dtype doesn't support AD"
|
|
)
|
|
|
|
|
|
instantiate_device_type_tests(TestDecomp, globals())
|
|
|
|
if __name__ == "__main__":
|
|
run_tests()
|