mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-06 12:20:52 +01:00
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/11876 Modern C++ api instead of macros, item() is aligned with Python frontend. caffe2::Tensor::capacity_nbytes is effecitvely unused and confusing w.r.t. caffe2::Tensor::nbytes(). codemod -d caffe2 --extensions cc,cpp,cu,cuh,h,py,hpp,mm toCByte "item<uint8_t>" codemod -d caffe2 --extensions cc,cpp,cu,cuh,h,py,hpp,mm toCLong "item<int64_t>" codemod -d caffe2 --extensions cc,cpp,cu,cuh,h,py,hpp,mm toCInt "item<int32_t>" codemod -d caffe2 --extensions cc,cpp,cu,cuh,h,py,hpp,mm toCDouble "item<double>" codemod -d caffe2 --extensions cc,cpp,cu,cuh,h,py,hpp,mm toCFloat "item<float>" codemod -d caffe2 --extensions cc,cpp,cu,cuh,h,py,hpp,mm toByteData "data<uint8_t>" codemod -d caffe2 --extensions cc,cpp,cu,cuh,h,py,hpp,mm toLongData "data<int64_t>" codemod -d caffe2 --extensions cc,cpp,cu,cuh,h,py,hpp,mm toIntData "data<int32_t>" codemod -d caffe2 --extensions cc,cpp,cu,cuh,h,py,hpp,mm toDoubleData "data<double>" codemod -d caffe2 --extensions cc,cpp,cu,cuh,h,py,hpp,mm toFloatData "data<float>" codemod -d hphp --extensions cc,cpp,cu,cuh,h,py,hpp,mm toCByte "item<uint8_t>" codemod -d hphp --extensions cc,cpp,cu,cuh,h,py,hpp,mm toCLong "item<int64_t>" codemod -d hphp --extensions cc,cpp,cu,cuh,h,py,hpp,mm toCInt "item<int32_t>" codemod -d hphp --extensions cc,cpp,cu,cuh,h,py,hpp,mm toCDouble "item<double>" codemod -d hphp --extensions cc,cpp,cu,cuh,h,py,hpp,mm toCFloat "item<float>" codemod -d hphp --extensions cc,cpp,cu,cuh,h,py,hpp,mm toByteData "data<uint8_t>" codemod -d hphp --extensions cc,cpp,cu,cuh,h,py,hpp,mm toLongData "data<int64_t>" codemod -d hphp --extensions cc,cpp,cu,cuh,h,py,hpp,mm toIntData "data<int32_t>" codemod -d hphp --extensions cc,cpp,cu,cuh,h,py,hpp,mm toDoubleData "data<double>" codemod -d hphp --extensions cc,cpp,cu,cuh,h,py,hpp,mm toFloatData "data<float>" codemod -d caffe2 --extensions cc,cpp,cu,cuh,h,py,hpp,mm toCComplexDouble "item<std::complex<double>>" codemod -d tc --extensions cc,cpp,cu,cuh,h,py,hpp,mm toCFloat "item<float>" Reviewed By: ezyang Differential Revision: D9948572 fbshipit-source-id: 70c9f5390d92b82c85fdd5f8a5aebca338ab413c
99 lines
2.8 KiB
C++
99 lines
2.8 KiB
C++
#pragma once
|
|
|
|
#include "torch/csrc/python_headers.h"
|
|
|
|
#include <ATen/ATen.h>
|
|
#include <pybind11/pybind11.h>
|
|
#include <pybind11/stl.h>
|
|
|
|
#include "torch/csrc/DynamicTypes.h"
|
|
#include "torch/csrc/autograd/python_variable.h"
|
|
#include "torch/csrc/utils/python_tuples.h"
|
|
#include "torch/csrc/utils/python_numbers.h"
|
|
|
|
#include <stdexcept>
|
|
|
|
namespace py = pybind11;
|
|
|
|
namespace pybind11 { namespace detail {
|
|
|
|
// torch.autograd.Variable <-> at::Tensor conversions (without unwrapping)
|
|
template <>
|
|
struct type_caster<at::Tensor> {
|
|
public:
|
|
PYBIND11_TYPE_CASTER(at::Tensor, _("at::Tensor"));
|
|
|
|
bool load(handle src, bool) {
|
|
PyObject* obj = src.ptr();
|
|
if (THPVariable_Check(obj)) {
|
|
value = reinterpret_cast<THPVariable*>(obj)->cdata;
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
static handle
|
|
cast(at::Tensor src, return_value_policy /* policy */, handle /* parent */) {
|
|
if (!src.is_variable()) {
|
|
throw std::runtime_error(
|
|
"Expected tensor's dynamic type to be Variable, not Tensor");
|
|
}
|
|
return handle(THPVariable_Wrap(torch::autograd::Variable(src)));
|
|
}
|
|
};
|
|
|
|
template<> struct type_caster<torch::autograd::Variable> {
|
|
public:
|
|
PYBIND11_TYPE_CASTER(torch::autograd::Variable, _("torch::autograd::Variable"));
|
|
bool load(handle src, bool) {
|
|
PyObject *source = src.ptr();
|
|
if (THPVariable_Check(source)) {
|
|
value = ((THPVariable*)source)->cdata;
|
|
return true;
|
|
} else {
|
|
return false;
|
|
}
|
|
}
|
|
static handle cast(torch::autograd::Variable src, return_value_policy /* policy */, handle /* parent */) {
|
|
return handle(THPVariable_Wrap(src));
|
|
}
|
|
};
|
|
|
|
template<> struct type_caster<at::IntList> {
|
|
public:
|
|
PYBIND11_TYPE_CASTER(at::IntList, _("at::IntList"));
|
|
|
|
bool load(handle src, bool) {
|
|
PyObject *source = src.ptr();
|
|
auto tuple = PyTuple_Check(source);
|
|
if (tuple || PyList_Check(source)) {
|
|
auto size = tuple ? PyTuple_GET_SIZE(source) : PyList_GET_SIZE(source);
|
|
v_value.resize(size);
|
|
for (int idx = 0; idx < size; idx++) {
|
|
PyObject* obj = tuple ? PyTuple_GET_ITEM(source, idx) : PyList_GET_ITEM(source, idx);
|
|
if (THPVariable_Check(obj)) {
|
|
v_value[idx] = THPVariable_Unpack(obj).item<int64_t>();
|
|
} else if (PyLong_Check(obj)) {
|
|
// use THPUtils_unpackLong after it is safe to include python_numbers.h
|
|
v_value[idx] = THPUtils_unpackLong(obj);
|
|
} else {
|
|
return false;
|
|
}
|
|
}
|
|
value = v_value;
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
static handle cast(at::IntList src, return_value_policy /* policy */, handle /* parent */) {
|
|
return handle(THPUtils_packInt64Array(src.size(), src.data()));
|
|
}
|
|
private:
|
|
std::vector<int64_t> v_value;
|
|
};
|
|
|
|
// http://pybind11.readthedocs.io/en/stable/advanced/cast/stl.html#c-17-library-containers
|
|
template <typename T>
|
|
struct type_caster<at::optional<T>> : optional_caster<at::optional<T>> {};
|
|
}} // namespace pybind11::detail
|