pytorch/torch/csrc/utils/pybind.h
Christian Puhrsch a9e6a673ae Remove caffe2::Tensor::capacity_nbytes, at::Tensor::to##name##Data, (#11876)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/11876

Modern C++ api instead of macros, item() is aligned with Python frontend. caffe2::Tensor::capacity_nbytes is effecitvely unused and confusing w.r.t. caffe2::Tensor::nbytes().

codemod -d caffe2           --extensions cc,cpp,cu,cuh,h,py,hpp,mm toCByte   "item<uint8_t>"
codemod -d caffe2           --extensions cc,cpp,cu,cuh,h,py,hpp,mm toCLong   "item<int64_t>"
codemod -d caffe2           --extensions cc,cpp,cu,cuh,h,py,hpp,mm toCInt    "item<int32_t>"
codemod -d caffe2           --extensions cc,cpp,cu,cuh,h,py,hpp,mm toCDouble "item<double>"
codemod -d caffe2           --extensions cc,cpp,cu,cuh,h,py,hpp,mm toCFloat  "item<float>"

codemod -d caffe2           --extensions cc,cpp,cu,cuh,h,py,hpp,mm toByteData   "data<uint8_t>"
codemod -d caffe2           --extensions cc,cpp,cu,cuh,h,py,hpp,mm toLongData   "data<int64_t>"
codemod -d caffe2           --extensions cc,cpp,cu,cuh,h,py,hpp,mm toIntData    "data<int32_t>"
codemod -d caffe2           --extensions cc,cpp,cu,cuh,h,py,hpp,mm toDoubleData "data<double>"
codemod -d caffe2           --extensions cc,cpp,cu,cuh,h,py,hpp,mm toFloatData  "data<float>"

codemod -d hphp           --extensions cc,cpp,cu,cuh,h,py,hpp,mm toCByte   "item<uint8_t>"
codemod -d hphp           --extensions cc,cpp,cu,cuh,h,py,hpp,mm toCLong   "item<int64_t>"
codemod -d hphp           --extensions cc,cpp,cu,cuh,h,py,hpp,mm toCInt    "item<int32_t>"
codemod -d hphp           --extensions cc,cpp,cu,cuh,h,py,hpp,mm toCDouble "item<double>"
codemod -d hphp           --extensions cc,cpp,cu,cuh,h,py,hpp,mm toCFloat  "item<float>"

codemod -d hphp           --extensions cc,cpp,cu,cuh,h,py,hpp,mm toByteData   "data<uint8_t>"
codemod -d hphp           --extensions cc,cpp,cu,cuh,h,py,hpp,mm toLongData   "data<int64_t>"
codemod -d hphp           --extensions cc,cpp,cu,cuh,h,py,hpp,mm toIntData    "data<int32_t>"
codemod -d hphp           --extensions cc,cpp,cu,cuh,h,py,hpp,mm toDoubleData "data<double>"
codemod -d hphp           --extensions cc,cpp,cu,cuh,h,py,hpp,mm toFloatData  "data<float>"

codemod -d caffe2 --extensions cc,cpp,cu,cuh,h,py,hpp,mm toCComplexDouble "item<std::complex<double>>"

codemod -d tc           --extensions cc,cpp,cu,cuh,h,py,hpp,mm toCFloat  "item<float>"

Reviewed By: ezyang

Differential Revision: D9948572

fbshipit-source-id: 70c9f5390d92b82c85fdd5f8a5aebca338ab413c
2018-09-24 10:40:10 -07:00

99 lines
2.8 KiB
C++

#pragma once
#include "torch/csrc/python_headers.h"
#include <ATen/ATen.h>
#include <pybind11/pybind11.h>
#include <pybind11/stl.h>
#include "torch/csrc/DynamicTypes.h"
#include "torch/csrc/autograd/python_variable.h"
#include "torch/csrc/utils/python_tuples.h"
#include "torch/csrc/utils/python_numbers.h"
#include <stdexcept>
namespace py = pybind11;
namespace pybind11 { namespace detail {
// torch.autograd.Variable <-> at::Tensor conversions (without unwrapping)
template <>
struct type_caster<at::Tensor> {
public:
PYBIND11_TYPE_CASTER(at::Tensor, _("at::Tensor"));
bool load(handle src, bool) {
PyObject* obj = src.ptr();
if (THPVariable_Check(obj)) {
value = reinterpret_cast<THPVariable*>(obj)->cdata;
return true;
}
return false;
}
static handle
cast(at::Tensor src, return_value_policy /* policy */, handle /* parent */) {
if (!src.is_variable()) {
throw std::runtime_error(
"Expected tensor's dynamic type to be Variable, not Tensor");
}
return handle(THPVariable_Wrap(torch::autograd::Variable(src)));
}
};
template<> struct type_caster<torch::autograd::Variable> {
public:
PYBIND11_TYPE_CASTER(torch::autograd::Variable, _("torch::autograd::Variable"));
bool load(handle src, bool) {
PyObject *source = src.ptr();
if (THPVariable_Check(source)) {
value = ((THPVariable*)source)->cdata;
return true;
} else {
return false;
}
}
static handle cast(torch::autograd::Variable src, return_value_policy /* policy */, handle /* parent */) {
return handle(THPVariable_Wrap(src));
}
};
template<> struct type_caster<at::IntList> {
public:
PYBIND11_TYPE_CASTER(at::IntList, _("at::IntList"));
bool load(handle src, bool) {
PyObject *source = src.ptr();
auto tuple = PyTuple_Check(source);
if (tuple || PyList_Check(source)) {
auto size = tuple ? PyTuple_GET_SIZE(source) : PyList_GET_SIZE(source);
v_value.resize(size);
for (int idx = 0; idx < size; idx++) {
PyObject* obj = tuple ? PyTuple_GET_ITEM(source, idx) : PyList_GET_ITEM(source, idx);
if (THPVariable_Check(obj)) {
v_value[idx] = THPVariable_Unpack(obj).item<int64_t>();
} else if (PyLong_Check(obj)) {
// use THPUtils_unpackLong after it is safe to include python_numbers.h
v_value[idx] = THPUtils_unpackLong(obj);
} else {
return false;
}
}
value = v_value;
return true;
}
return false;
}
static handle cast(at::IntList src, return_value_policy /* policy */, handle /* parent */) {
return handle(THPUtils_packInt64Array(src.size(), src.data()));
}
private:
std::vector<int64_t> v_value;
};
// http://pybind11.readthedocs.io/en/stable/advanced/cast/stl.html#c-17-library-containers
template <typename T>
struct type_caster<at::optional<T>> : optional_caster<at::optional<T>> {};
}} // namespace pybind11::detail