mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-07 12:21:27 +01:00
* Improve Function interface * Undo tracer changes * Fix bug in VariableType.set_history * Rename function_counter and sequence_number to sequence_nr * Clarify Function documentation * Replace swap_next_edges with next_edges() getter * Bring back set_gradient_edge * Simplify special.cpp * add_gradient_edge -> create_gradient_edge * Add mutable getters for pre/post hooks * Use make_variable with Edge * Remove remove_gradient_edge in favor of detach_ * Fix documentation and remove create_gradient_edge friend method * Canonicalize some includes
110 lines
3.6 KiB
C++
110 lines
3.6 KiB
C++
#include <Python.h>
|
|
|
|
#include "torch/csrc/autograd/function.h"
|
|
|
|
#include "torch/csrc/autograd/functions/special.h"
|
|
#include "torch/csrc/autograd/variable.h"
|
|
#include "torch/csrc/jit/ir.h"
|
|
|
|
#include <ATen/ATen.h>
|
|
|
|
#include <algorithm>
|
|
#include <cstdint>
|
|
#include <memory>
|
|
#include <stdexcept>
|
|
#include <string>
|
|
#include <utility>
|
|
#include <vector>
|
|
|
|
namespace torch { namespace autograd {
|
|
|
|
thread_local uint64_t Function::next_sequence_nr_ = 0;
|
|
|
|
auto Function::name() -> std::string {
|
|
return std::string(typeid(*this).name());
|
|
}
|
|
|
|
// This function is analogous to make_trace which operates on PythonOp, but this
|
|
// function instead works for C++ implemented autograd Functions, which don't
|
|
// actually have any backing Python class. We still need to trace them!
|
|
variable_list Function::traced_apply(variable_list inputs) {
|
|
using namespace torch::jit;
|
|
// Traceable Functions are completely transparent to the JIT.
|
|
if (is_traceable()) {
|
|
return apply(inputs);
|
|
}
|
|
auto state = tracer::getTracingState(inputs);
|
|
auto state_lock = state->lock();
|
|
|
|
// Insert a CppOp in the trace.
|
|
auto& graph = state->graph;
|
|
std::vector<VariableFlags> var_flags;
|
|
for(auto & input: inputs) {
|
|
var_flags.push_back(VariableFlags::of(input));
|
|
}
|
|
auto* this_node = graph->createCppOp(get_shared_ptr(), std::move(var_flags));
|
|
this_node->setSourceLocation(std::make_shared<SourceLocation>(
|
|
jit::tracer::getPythonInterpreterStackTrace()
|
|
));
|
|
for (auto& input: inputs) {
|
|
this_node->addInput(tracer::getValueTrace(state, input));
|
|
}
|
|
graph->appendNode(this_node);
|
|
|
|
// Finally apply this Function.
|
|
state_lock.unlock();
|
|
variable_list outputs = apply(inputs);
|
|
state_lock.lock();
|
|
|
|
// Set up output traces.
|
|
int num_outputs = outputs.size();
|
|
for (int i = 0; i < num_outputs; ++i) {
|
|
auto& output = outputs[i];
|
|
auto sel = this_node->addOutput();
|
|
// TODO: At the moment, C++ does not track shared storage. It
|
|
// should. Update this when that happens.
|
|
if (output.defined()) {
|
|
sel->inferTypeFrom(output.data());
|
|
tracer::setValueTrace(state, output, sel);
|
|
}
|
|
}
|
|
|
|
if (!passes_state_transparently()) {
|
|
auto this_eval = dynamic_cast<Eval*>(this);
|
|
// Evals consume handle from a context edge of forward node
|
|
if (this_eval)
|
|
this_node->addInput(this_eval->forward_ctx_select);
|
|
// There's no point in wrapping functions in Eval, if we know they already are
|
|
// part of another Eval subgraph. This is both a small optimization, and
|
|
// it allows us to not implement saved_variables() in many functions.
|
|
const bool should_trace_backward = tracing_state_->in_eval_subgraph;
|
|
if (!should_trace_backward) {
|
|
auto saved_vars = saved_variables();
|
|
if (!saved_vars)
|
|
throw std::runtime_error("saved_variables() needed but not implemented in " + name());
|
|
variable_list bw_subgraph_inputs(inputs);
|
|
for (auto& saved_var : *saved_vars) {
|
|
bw_subgraph_inputs.emplace_back(saved_var.unpack(get_shared_ptr()));
|
|
}
|
|
tracer::nontraceableBackwardSubgraph(bw_subgraph_inputs, outputs);
|
|
}
|
|
bool has_backwards_eval = !should_trace_backward || this_eval;
|
|
if (has_backwards_eval)
|
|
set_up_context_edge(this_node, inputs, outputs);
|
|
}
|
|
return outputs;
|
|
}
|
|
|
|
void Function::set_up_context_edge(
|
|
jit::Node* this_node,
|
|
const variable_list& inputs,
|
|
const variable_list& outputs) {
|
|
auto ctx_select = this_node->addOutput();
|
|
ctx_select->setType(std::make_shared<jit::HandleType>());
|
|
auto backward_eval = Eval::getBackwardEval(inputs, outputs);
|
|
if (backward_eval)
|
|
backward_eval->forward_ctx_select = ctx_select;
|
|
}
|
|
|
|
}} // namespace torch::autograd
|