mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-06 12:20:52 +01:00
This PR suggests adding some models to `cpu_skip_list` which are currently being run in TIMM and Torchbench. The suggested models takes a long time which leads to the benchmark runs being `timeout`. [benchmark runs for aarch64](https://github.com/pytorch/pytorch/actions/workflows/inductor-perf-test-nightly-aarch64.yml) • The issue stems from unoptimized groupwise convolution (BF16 /F16 dtype) kernels for aarch64 platforms , which significantly slow down execution leading to the timeout. **Action:** • An optimized BF16 groupwise convolution kernel is currently being developed in oneDNN, targeted for release in Q4 2025. To maintain dashboard consistency and signal clarity, I’ve skipped the affected tests in: * timm benchmarks * torchbench benchmarks As suggested, skip is applied at the CPU - arch level, explicitly branching for aarch64 and adding models which needs to be skipped. This keeps the logic clean, but: • An alternative considered was increasing shard counts for aarch64 runners, but given the known performance bottleneck, skipping avoids wasted compute cycles. Suggestions around this will be appreciated. Benchmark does not timeout after the suggested change: https://github.com/pytorch/pytorch/actions/runs/16447200138 Pull Request resolved: https://github.com/pytorch/pytorch/pull/158842 Approved by: https://github.com/malfet
493 lines
16 KiB
Python
Executable File
493 lines
16 KiB
Python
Executable File
#!/usr/bin/env python3
|
|
|
|
import gc
|
|
import importlib
|
|
import logging
|
|
import os
|
|
import re
|
|
import sys
|
|
import warnings
|
|
from collections import namedtuple
|
|
from os.path import abspath, exists
|
|
|
|
import torch
|
|
|
|
|
|
try:
|
|
from .common import BenchmarkRunner, load_yaml_file, main
|
|
except ImportError:
|
|
from common import BenchmarkRunner, load_yaml_file, main
|
|
|
|
from torch._dynamo.testing import collect_results, reduce_to_scalar_loss
|
|
from torch._dynamo.utils import clone_inputs
|
|
|
|
|
|
# We are primarily interested in tf32 datatype
|
|
torch.backends.cuda.matmul.allow_tf32 = True
|
|
|
|
# Enable FX graph caching
|
|
if "TORCHINDUCTOR_FX_GRAPH_CACHE" not in os.environ:
|
|
torch._inductor.config.fx_graph_cache = True
|
|
|
|
# Enable Autograd caching
|
|
if "TORCHINDUCTOR_AUTOGRAD_CACHE" not in os.environ:
|
|
torch._functorch.config.enable_autograd_cache = True
|
|
|
|
|
|
def _reassign_parameters(model):
|
|
# torch_geometric models register parameter as tensors due to
|
|
# https://github.com/pyg-team/pytorch_geometric/blob/master/torch_geometric/nn/dense/linear.py#L158-L168
|
|
# Since it is unusual thing to do, we just reassign them to parameters
|
|
def state_dict_hook(module, destination, prefix, local_metadata):
|
|
for name, param in module.named_parameters():
|
|
if isinstance(destination[name], torch.Tensor) and not isinstance(
|
|
destination[name], torch.nn.Parameter
|
|
):
|
|
destination[name] = torch.nn.Parameter(destination[name])
|
|
|
|
model._register_state_dict_hook(state_dict_hook)
|
|
|
|
|
|
def setup_torchbench_cwd():
|
|
original_dir = abspath(os.getcwd())
|
|
|
|
os.environ["KALDI_ROOT"] = "/tmp" # avoids some spam
|
|
for torchbench_dir in (
|
|
"./torchbenchmark",
|
|
"../torchbenchmark",
|
|
"../torchbench",
|
|
"../benchmark",
|
|
"../../torchbenchmark",
|
|
"../../torchbench",
|
|
"../../benchmark",
|
|
"../../../torchbenchmark",
|
|
"../../../torchbench",
|
|
"../../../benchmark",
|
|
):
|
|
if exists(torchbench_dir):
|
|
break
|
|
|
|
if exists(torchbench_dir):
|
|
torchbench_dir = abspath(torchbench_dir)
|
|
os.chdir(torchbench_dir)
|
|
sys.path.append(torchbench_dir)
|
|
|
|
return original_dir
|
|
|
|
|
|
def process_hf_reformer_output(out):
|
|
assert isinstance(out, list)
|
|
# second output is unstable
|
|
return [elem for i, elem in enumerate(out) if i != 1]
|
|
|
|
|
|
def process_hf_whisper_output(out):
|
|
out_ret = []
|
|
for i, elem in enumerate(out):
|
|
if i == 0:
|
|
if elem is not None:
|
|
assert isinstance(elem, dict)
|
|
out_ret.append({k: v for k, v in elem.items() if k != "logits"})
|
|
elif i != 1:
|
|
out_ret.append(elem)
|
|
|
|
return out_ret
|
|
|
|
|
|
process_train_model_output = {
|
|
"hf_Reformer": process_hf_reformer_output,
|
|
"hf_Whisper": process_hf_whisper_output,
|
|
}
|
|
|
|
|
|
class TorchBenchmarkRunner(BenchmarkRunner):
|
|
def __init__(self):
|
|
super().__init__()
|
|
self.suite_name = "torchbench"
|
|
self.optimizer = None
|
|
|
|
@property
|
|
def _config(self):
|
|
return load_yaml_file("torchbench.yaml")
|
|
|
|
@property
|
|
def _skip(self):
|
|
return self._config["skip"]
|
|
|
|
@property
|
|
def _batch_size(self):
|
|
return self._config["batch_size"]
|
|
|
|
@property
|
|
def _tolerance(self):
|
|
return self._config["tolerance"]
|
|
|
|
@property
|
|
def _require_larger_multiplier_for_smaller_tensor(self):
|
|
return self._config["require_larger_multiplier_for_smaller_tensor"]
|
|
|
|
@property
|
|
def _accuracy(self):
|
|
return self._config["accuracy"]
|
|
|
|
@property
|
|
def skip_models(self):
|
|
return self._skip["all"]
|
|
|
|
@property
|
|
def skip_models_for_cpu(self):
|
|
return self._skip["device"]["cpu"]
|
|
|
|
@property
|
|
def skip_models_for_cpu_aarch64(self):
|
|
return self._skip["device"]["cpu_aarch64"]
|
|
|
|
@property
|
|
def skip_models_for_cuda(self):
|
|
return self._skip["device"]["cuda"]
|
|
|
|
@property
|
|
def skip_models_for_freezing_cuda(self):
|
|
return self._skip["freezing"]["cuda"]
|
|
|
|
@property
|
|
def disable_cudagraph_models(self):
|
|
return self._config["disable_cudagraph"]
|
|
|
|
@property
|
|
def skip_models_for_freezing_cpu(self):
|
|
return self._skip["freezing"]["cpu"]
|
|
|
|
@property
|
|
def slow_models(self):
|
|
return self._config["slow"]
|
|
|
|
@property
|
|
def very_slow_models(self):
|
|
return self._config["very_slow"]
|
|
|
|
@property
|
|
def non_deterministic_models(self):
|
|
return self._config["non_deterministic"]
|
|
|
|
@property
|
|
def get_output_amp_train_process_func(self):
|
|
return process_train_model_output
|
|
|
|
@property
|
|
def skip_not_suitable_for_training_models(self):
|
|
return self._skip["test"]["training"]
|
|
|
|
@property
|
|
def failing_fx2trt_models(self):
|
|
return self._config["trt_not_yet_working"]
|
|
|
|
@property
|
|
def force_amp_for_fp16_bf16_models(self):
|
|
return self._config["dtype"]["force_amp_for_fp16_bf16_models"]
|
|
|
|
@property
|
|
def force_fp16_for_bf16_models(self):
|
|
return self._config["dtype"]["force_fp16_for_bf16_models"]
|
|
|
|
@property
|
|
def skip_accuracy_checks_large_models_dashboard(self):
|
|
if self.args.dashboard or self.args.accuracy:
|
|
return self._accuracy["skip"]["large_models"]
|
|
return set()
|
|
|
|
@property
|
|
def skip_accuracy_check_as_eager_non_deterministic(self):
|
|
if self.args.accuracy and self.args.training:
|
|
return self._accuracy["skip"]["eager_not_deterministic"]
|
|
return set()
|
|
|
|
@property
|
|
def skip_multiprocess_models(self):
|
|
return self._skip["multiprocess"]
|
|
|
|
@property
|
|
def skip_models_due_to_control_flow(self):
|
|
return self._skip["control_flow"]
|
|
|
|
@property
|
|
def skip_models_due_to_export_not_supported(self):
|
|
return self._skip["export_not_supported"]
|
|
|
|
@property
|
|
def guard_on_nn_module_models(self):
|
|
return {
|
|
"vision_maskrcnn",
|
|
}
|
|
|
|
@property
|
|
def inline_inbuilt_nn_modules_models(self):
|
|
return {
|
|
"basic_gnn_edgecnn",
|
|
"drq",
|
|
"hf_Reformer",
|
|
"DALLE2_pytorch",
|
|
"hf_BigBird",
|
|
"detectron2_maskrcnn_r_50_fpn",
|
|
"detectron2_maskrcnn_r_101_fpn",
|
|
"vision_maskrcnn",
|
|
"doctr_reco_predictor",
|
|
"hf_T5_generate",
|
|
}
|
|
|
|
def load_model(
|
|
self,
|
|
device,
|
|
model_name,
|
|
batch_size=None,
|
|
part=None,
|
|
extra_args=None,
|
|
):
|
|
if self.args.enable_activation_checkpointing:
|
|
raise NotImplementedError(
|
|
"Activation checkpointing not implemented for Torchbench models"
|
|
)
|
|
is_training = self.args.training
|
|
use_eval_mode = self.args.use_eval_mode
|
|
candidates = [
|
|
f"torchbenchmark.models.{model_name}",
|
|
f"torchbenchmark.canary_models.{model_name}",
|
|
f"torchbenchmark.models.fb.{model_name}",
|
|
]
|
|
for c in candidates:
|
|
try:
|
|
module = importlib.import_module(c)
|
|
break
|
|
except ModuleNotFoundError as e:
|
|
if e.name != c:
|
|
raise
|
|
else:
|
|
raise ImportError(f"could not import any of {candidates}")
|
|
benchmark_cls = getattr(module, "Model", None)
|
|
if benchmark_cls is None:
|
|
raise NotImplementedError(f"{model_name}.Model is None")
|
|
|
|
if not hasattr(benchmark_cls, "name"):
|
|
benchmark_cls.name = model_name
|
|
|
|
cant_change_batch_size = (
|
|
not getattr(benchmark_cls, "ALLOW_CUSTOMIZE_BSIZE", True)
|
|
or model_name in self._config["dont_change_batch_size"]
|
|
)
|
|
if cant_change_batch_size:
|
|
batch_size = None
|
|
if (
|
|
batch_size is None
|
|
and is_training
|
|
and model_name in self._batch_size["training"]
|
|
):
|
|
batch_size = self._batch_size["training"][model_name]
|
|
elif (
|
|
batch_size is None
|
|
and not is_training
|
|
and model_name in self._batch_size["inference"]
|
|
):
|
|
batch_size = self._batch_size["inference"][model_name]
|
|
|
|
# Control the memory footprint for few models
|
|
if self.args.accuracy and model_name in self._accuracy["max_batch_size"]:
|
|
batch_size = min(batch_size, self._accuracy["max_batch_size"][model_name])
|
|
|
|
# workaround "RuntimeError: not allowed to set torch.backends.cudnn flags"
|
|
torch.backends.__allow_nonbracketed_mutation_flag = True
|
|
if extra_args is None:
|
|
extra_args = []
|
|
if part:
|
|
extra_args += ["--part", part]
|
|
|
|
# sam_fast only runs with amp
|
|
if model_name == "sam_fast":
|
|
self.args.amp = True
|
|
self.setup_amp()
|
|
|
|
if model_name == "vision_maskrcnn" and is_training:
|
|
# Output of vision_maskrcnn model is a list of bounding boxes,
|
|
# sorted on the basis of their scores. This makes accuracy
|
|
# comparison hard with torch.compile. torch.compile can cause minor
|
|
# divergences in the output because of how fusion works for amp in
|
|
# TorchInductor compared to eager. Therefore, instead of looking at
|
|
# all the bounding boxes, we compare only top 4.
|
|
model_kwargs = {"box_detections_per_img": 4}
|
|
benchmark = benchmark_cls(
|
|
test="train",
|
|
device=device,
|
|
batch_size=batch_size,
|
|
extra_args=extra_args,
|
|
model_kwargs=model_kwargs,
|
|
)
|
|
use_eval_mode = True
|
|
elif is_training:
|
|
benchmark = benchmark_cls(
|
|
test="train",
|
|
device=device,
|
|
batch_size=batch_size,
|
|
extra_args=extra_args,
|
|
)
|
|
else:
|
|
benchmark = benchmark_cls(
|
|
test="eval",
|
|
device=device,
|
|
batch_size=batch_size,
|
|
extra_args=extra_args,
|
|
)
|
|
model, example_inputs = benchmark.get_module()
|
|
if model_name in [
|
|
"basic_gnn_edgecnn",
|
|
"basic_gnn_gcn",
|
|
"basic_gnn_sage",
|
|
"basic_gnn_gin",
|
|
]:
|
|
_reassign_parameters(model)
|
|
|
|
# Models that must be in train mode while training
|
|
if is_training and (
|
|
not use_eval_mode or model_name in self._config["only_training"]
|
|
):
|
|
model.train()
|
|
else:
|
|
model.eval()
|
|
gc.collect()
|
|
batch_size = benchmark.batch_size
|
|
if model_name == "torchrec_dlrm":
|
|
batch_namedtuple = namedtuple(
|
|
"Batch", "dense_features sparse_features labels"
|
|
)
|
|
example_inputs = tuple(
|
|
batch_namedtuple(
|
|
dense_features=batch.dense_features,
|
|
sparse_features=batch.sparse_features,
|
|
labels=batch.labels,
|
|
)
|
|
for batch in example_inputs
|
|
)
|
|
# Torchbench has quite different setup for yolov3, so directly passing
|
|
# the right example_inputs
|
|
if model_name == "yolov3":
|
|
example_inputs = (torch.rand(batch_size, 3, 384, 512).to(device),)
|
|
# See https://github.com/pytorch/benchmark/issues/1561
|
|
if model_name == "maml_omniglot":
|
|
batch_size = 5
|
|
assert example_inputs[0].shape[0] == batch_size
|
|
if model_name == "vision_maskrcnn":
|
|
batch_size = 1
|
|
# global current_name, current_device
|
|
# current_device = device
|
|
# current_name = benchmark.name
|
|
|
|
if self.args.trace_on_xla:
|
|
# work around for: https://github.com/pytorch/xla/issues/4174
|
|
import torch_xla # noqa: F401
|
|
self.validate_model(model, example_inputs)
|
|
return device, benchmark.name, model, example_inputs, batch_size
|
|
|
|
def iter_model_names(self, args):
|
|
from torchbenchmark import _list_canary_model_paths, _list_model_paths
|
|
|
|
models = _list_model_paths()
|
|
models += [
|
|
f
|
|
for f in _list_canary_model_paths()
|
|
if os.path.basename(f) in self._config["canary_models"]
|
|
]
|
|
models.sort()
|
|
|
|
start, end = self.get_benchmark_indices(len(models))
|
|
for index, model_path in enumerate(models):
|
|
if index < start or index >= end:
|
|
continue
|
|
|
|
model_name = os.path.basename(model_path)
|
|
if (
|
|
not re.search("|".join(args.filter), model_name, re.IGNORECASE)
|
|
or re.search("|".join(args.exclude), model_name, re.IGNORECASE)
|
|
or model_name in args.exclude_exact
|
|
or model_name in self.skip_models
|
|
):
|
|
continue
|
|
|
|
yield model_name
|
|
|
|
def pick_grad(self, name, is_training):
|
|
if is_training or name in ("maml",):
|
|
return torch.enable_grad()
|
|
else:
|
|
return torch.no_grad()
|
|
|
|
def use_larger_multiplier_for_smaller_tensor(self, name):
|
|
return name in self._require_larger_multiplier_for_smaller_tensor
|
|
|
|
def get_tolerance_and_cosine_flag(self, is_training, current_device, name):
|
|
tolerance = 1e-4
|
|
cosine = self.args.cosine
|
|
# Increase the tolerance for torch allclose
|
|
if self.args.float16 or self.args.amp:
|
|
if self.args.freezing and (freezing := self._tolerance["freezing"]):
|
|
higher_fp16 = freezing.get("higher_fp16", None)
|
|
even_higher = freezing.get("even_higher", None)
|
|
if higher_fp16 and name in higher_fp16:
|
|
return 1e-2, cosine
|
|
elif even_higher and name in even_higher:
|
|
return 8 * 1e-2, cosine
|
|
if name in self._tolerance["higher_fp16"]:
|
|
return 1e-2, cosine
|
|
elif name in self._tolerance["even_higher"]:
|
|
return 8 * 1e-2, cosine
|
|
return 1e-3, cosine
|
|
|
|
if self.args.bfloat16:
|
|
if name in self._tolerance["higher_bf16"]:
|
|
return 1e-2, cosine
|
|
elif current_device == "xpu" and name in self._tolerance["higher_bf16_xpu"]:
|
|
return 8 * 1e-2, cosine
|
|
|
|
if is_training and (current_device == "cuda" or current_device == "xpu"):
|
|
tolerance = 1e-3
|
|
if name in self._tolerance["cosine"]:
|
|
cosine = True
|
|
elif name in self._tolerance["higher"]:
|
|
tolerance = 1e-3
|
|
elif name in self._tolerance["even_higher"]:
|
|
tolerance = 8 * 1e-2
|
|
return tolerance, cosine
|
|
|
|
def compute_loss(self, pred):
|
|
return reduce_to_scalar_loss(pred)
|
|
|
|
def forward_pass(self, mod, inputs, collect_outputs=True):
|
|
with self.autocast(**self.autocast_arg):
|
|
if isinstance(inputs, dict):
|
|
return mod(**inputs)
|
|
else:
|
|
return mod(*inputs)
|
|
|
|
def forward_and_backward_pass(self, mod, inputs, collect_outputs=True):
|
|
cloned_inputs = clone_inputs(inputs)
|
|
self.optimizer_zero_grad(mod)
|
|
with self.autocast(**self.autocast_arg):
|
|
if isinstance(cloned_inputs, dict):
|
|
pred = mod(**cloned_inputs)
|
|
else:
|
|
pred = mod(*cloned_inputs)
|
|
loss = self.compute_loss(pred)
|
|
self.grad_scaler.scale(loss).backward()
|
|
self.optimizer_step()
|
|
if collect_outputs:
|
|
return collect_results(mod, None, loss, cloned_inputs)
|
|
return None
|
|
|
|
|
|
def torchbench_main():
|
|
original_dir = setup_torchbench_cwd()
|
|
logging.basicConfig(level=logging.WARNING)
|
|
warnings.filterwarnings("ignore")
|
|
main(TorchBenchmarkRunner(), original_dir)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
torchbench_main()
|