mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-06 12:20:52 +01:00
Summary:
The original PR is https://github.com/pytorch/pytorch/pull/31278.
CC: ezyang jamestwebber fritzo zasdfgbnm
---
<!-- # This PR - CPU
In [1]: import torch; import torch.distributions as dist
In [2]: counts = torch.randint(10, 1000, [1000,1000])
...: p = 0.5 * torch.ones(1000, 1000)
In [3]: %timeit dist.binomial.Binomial(total_count=counts, probs=p).sample()
94.8 ms ± 911 µs per loop (mean ± std. dev. of 7 runs, 10 loops each)
-->
```
# This PR - GPU
In [1]: import torch; import torch.distributions as dist
In [2]: counts = torch.randint(10, 1000, [1000,1000]).cuda(); p = 0.5 * torch.ones(1000, 1000).cuda()
In [3]: %timeit dist.binomial.Binomial(total_count=counts, probs=p).sample()
737 µs ± 216 ns per loop (mean ± std. dev. of 7 runs, 1000 loops each)
# master (commit: 806f22b167) - GPU
In [5]: counts = torch.randint(10, 1000, [1000,1000]).cuda(); p = 0.5 * torch.ones(1000, 1000).cuda()
In [6]: %timeit dist.binomial.Binomial(total_count=counts, probs=p).sample()
46.3 ms ± 76.2 µs per loop (mean ± std. dev. of 7 runs, 10 loops each)
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/36858
Differential Revision: D21178367
Pulled By: ezyang
fbshipit-source-id: 7e7d6f463e35b07156d69bd7452040b2f9c2eb7a
130 lines
5.2 KiB
Python
130 lines
5.2 KiB
Python
from numbers import Number
|
|
import torch
|
|
from torch.distributions import constraints
|
|
from torch.distributions.distribution import Distribution
|
|
from torch.distributions.utils import broadcast_all, probs_to_logits, lazy_property, logits_to_probs
|
|
|
|
|
|
def _clamp_by_zero(x):
|
|
# works like clamp(x, min=0) but has grad at 0 is 0.5
|
|
return (x.clamp(min=0) + x - x.clamp(max=0)) / 2
|
|
|
|
|
|
class Binomial(Distribution):
|
|
r"""
|
|
Creates a Binomial distribution parameterized by :attr:`total_count` and
|
|
either :attr:`probs` or :attr:`logits` (but not both). :attr:`total_count` must be
|
|
broadcastable with :attr:`probs`/:attr:`logits`.
|
|
|
|
Example::
|
|
|
|
>>> m = Binomial(100, torch.tensor([0 , .2, .8, 1]))
|
|
>>> x = m.sample()
|
|
tensor([ 0., 22., 71., 100.])
|
|
|
|
>>> m = Binomial(torch.tensor([[5.], [10.]]), torch.tensor([0.5, 0.8]))
|
|
>>> x = m.sample()
|
|
tensor([[ 4., 5.],
|
|
[ 7., 6.]])
|
|
|
|
Args:
|
|
total_count (int or Tensor): number of Bernoulli trials
|
|
probs (Tensor): Event probabilities
|
|
logits (Tensor): Event log-odds
|
|
"""
|
|
arg_constraints = {'total_count': constraints.nonnegative_integer,
|
|
'probs': constraints.unit_interval,
|
|
'logits': constraints.real}
|
|
has_enumerate_support = True
|
|
|
|
def __init__(self, total_count=1, probs=None, logits=None, validate_args=None):
|
|
if (probs is None) == (logits is None):
|
|
raise ValueError("Either `probs` or `logits` must be specified, but not both.")
|
|
if probs is not None:
|
|
self.total_count, self.probs, = broadcast_all(total_count, probs)
|
|
self.total_count = self.total_count.type_as(self.logits)
|
|
is_scalar = isinstance(self.probs, Number)
|
|
else:
|
|
self.total_count, self.logits, = broadcast_all(total_count, logits)
|
|
self.total_count = self.total_count.type_as(self.logits)
|
|
is_scalar = isinstance(self.logits, Number)
|
|
|
|
self._param = self.probs if probs is not None else self.logits
|
|
if is_scalar:
|
|
batch_shape = torch.Size()
|
|
else:
|
|
batch_shape = self._param.size()
|
|
super(Binomial, self).__init__(batch_shape, validate_args=validate_args)
|
|
|
|
def expand(self, batch_shape, _instance=None):
|
|
new = self._get_checked_instance(Binomial, _instance)
|
|
batch_shape = torch.Size(batch_shape)
|
|
new.total_count = self.total_count.expand(batch_shape)
|
|
if 'probs' in self.__dict__:
|
|
new.probs = self.probs.expand(batch_shape)
|
|
new._param = new.probs
|
|
if 'logits' in self.__dict__:
|
|
new.logits = self.logits.expand(batch_shape)
|
|
new._param = new.logits
|
|
super(Binomial, new).__init__(batch_shape, validate_args=False)
|
|
new._validate_args = self._validate_args
|
|
return new
|
|
|
|
def _new(self, *args, **kwargs):
|
|
return self._param.new(*args, **kwargs)
|
|
|
|
@constraints.dependent_property
|
|
def support(self):
|
|
return constraints.integer_interval(0, self.total_count)
|
|
|
|
@property
|
|
def mean(self):
|
|
return self.total_count * self.probs
|
|
|
|
@property
|
|
def variance(self):
|
|
return self.total_count * self.probs * (1 - self.probs)
|
|
|
|
@lazy_property
|
|
def logits(self):
|
|
return probs_to_logits(self.probs, is_binary=True)
|
|
|
|
@lazy_property
|
|
def probs(self):
|
|
return logits_to_probs(self.logits, is_binary=True)
|
|
|
|
@property
|
|
def param_shape(self):
|
|
return self._param.size()
|
|
|
|
def sample(self, sample_shape=torch.Size()):
|
|
shape = self._extended_shape(sample_shape)
|
|
with torch.no_grad():
|
|
return torch.binomial(self.total_count.expand(shape), self.probs.expand(shape))
|
|
|
|
def log_prob(self, value):
|
|
if self._validate_args:
|
|
self._validate_sample(value)
|
|
log_factorial_n = torch.lgamma(self.total_count + 1)
|
|
log_factorial_k = torch.lgamma(value + 1)
|
|
log_factorial_nmk = torch.lgamma(self.total_count - value + 1)
|
|
# k * log(p) + (n - k) * log(1 - p) = k * (log(p) - log(1 - p)) + n * log(1 - p)
|
|
# (case logit < 0) = k * logit - n * log1p(e^logit)
|
|
# (case logit > 0) = k * logit - n * (log(p) - log(1 - p)) + n * log(p)
|
|
# = k * logit - n * logit - n * log1p(e^-logit)
|
|
# (merge two cases) = k * logit - n * max(logit, 0) - n * log1p(e^-|logit|)
|
|
normalize_term = (self.total_count * _clamp_by_zero(self.logits)
|
|
+ self.total_count * torch.log1p(torch.exp(-torch.abs(self.logits)))
|
|
- log_factorial_n)
|
|
return value * self.logits - log_factorial_k - log_factorial_nmk - normalize_term
|
|
|
|
def enumerate_support(self, expand=True):
|
|
total_count = int(self.total_count.max())
|
|
if not self.total_count.min() == total_count:
|
|
raise NotImplementedError("Inhomogeneous total count not supported by `enumerate_support`.")
|
|
values = torch.arange(1 + total_count, dtype=self._param.dtype, device=self._param.device)
|
|
values = values.view((-1,) + (1,) * len(self._batch_shape))
|
|
if expand:
|
|
values = values.expand((-1,) + self._batch_shape)
|
|
return values
|