mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-06 12:20:52 +01:00
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/32684 Previously we have `clone` and `clone_instance`, where `clone` will clone both type and value, and `clone_instance` only clone the value, both of them are shallow copies. We need to re-evaluate whether we should expose them as a user facing API. I think we should hide `clone`, but `clone_instance` might be useful as well, especially when we are copying a model with very large weights, people might just want to do shallow copy. This PR adds a `deepcopy` that might be useful as a user API, which deep copies the values, including Tensor, but we didn't deepcopy `Blob`, `Capsule`, `Future` or `PyObject`. For more discussions please see the following issue. fixes: https://github.com/pytorch/pytorch/issues/32519 Test Plan: Imported from OSS Differential Revision: D21220756 fbshipit-source-id: 476bf11fe82c08fac36e7457879a09f545ffdc5e
213 lines
7.1 KiB
C++
213 lines
7.1 KiB
C++
#include <test/cpp/jit/test_base.h>
|
|
#include <test/cpp/jit/test_utils.h>
|
|
#include <torch/torch.h>
|
|
|
|
namespace torch {
|
|
namespace jit {
|
|
|
|
void testModuleClone() {
|
|
auto cu = std::make_shared<CompilationUnit>();
|
|
auto parent = ClassType::create("parent", cu, true);
|
|
// creating child module
|
|
auto child = ClassType::create("child", cu, true);
|
|
auto attr_name = "attr";
|
|
child->addAttribute(attr_name, IntType::get());
|
|
Module c1(cu, child);
|
|
auto v1 = IValue(2);
|
|
c1.register_attribute(attr_name, IntType::get(), v1, false);
|
|
Module c2(cu, child);
|
|
auto v2 = IValue(3);
|
|
c2.register_attribute(attr_name, IntType::get(), v2, false);
|
|
|
|
// attach two child module instance to parent that shares
|
|
// ClassType
|
|
Module p(cu, parent);
|
|
p.register_attribute("c1", c1.type(), c1._ivalue(), false);
|
|
p.register_attribute("c2", c2.type(), c2._ivalue(), false);
|
|
|
|
// clone parent
|
|
Module p2 = p.clone();
|
|
// check the two child module has the same ClassType
|
|
ASSERT_EQ(p2.attr("c1").type(), p2.attr("c2").type());
|
|
// but different instances
|
|
ASSERT_EQ(Module(p2.attr("c1").toObject()).attr(attr_name).toInt(), 2);
|
|
ASSERT_EQ(Module(p2.attr("c2").toObject()).attr(attr_name).toInt(), 3);
|
|
}
|
|
|
|
void testModuleCloneInstance() {
|
|
auto cu = std::make_shared<CompilationUnit>();
|
|
auto cls = ClassType::create("foo.bar", cu, true);
|
|
auto attr_name = "attr";
|
|
cls->addAttribute(attr_name, IntType::get());
|
|
Module m(cu, cls);
|
|
auto v = IValue(2);
|
|
m.register_attribute(attr_name, IntType::get(), v, false);
|
|
|
|
Module m2 = m.clone();
|
|
Module m3 = m.clone_instance();
|
|
// Make sure copy works
|
|
ASSERT_EQ(m2.attr(attr_name).toInt(), 2);
|
|
ASSERT_EQ(m3.attr(attr_name).toInt(), 2);
|
|
|
|
// clone will copy both type and data, therefore we'll have a
|
|
// different type
|
|
ASSERT_NE(m.type(), m2.type());
|
|
// clone_instance only copies data, type is shared
|
|
ASSERT_EQ(m.type(), m3.type());
|
|
|
|
// change value of copied instance
|
|
m3.register_attribute(attr_name, IntType::get(), IValue(3), false);
|
|
// Verify value of original instance doesn't change
|
|
ASSERT_EQ(m2.attr(attr_name).toInt(), 2);
|
|
ASSERT_EQ(m3.attr(attr_name).toInt(), 3);
|
|
}
|
|
|
|
void testModuleDeepcopy() {
|
|
auto cu = std::make_shared<CompilationUnit>();
|
|
auto cls = ClassType::create("foo.bar", cu, true);
|
|
auto str_attr = "str_attr";
|
|
auto int_attr = "int_attr";
|
|
auto tensor_attr = "tensor_attr";
|
|
auto tensor_list_attr = "tensor_list_attr";
|
|
cls->addAttribute(int_attr, IntType::get());
|
|
cls->addAttribute(str_attr, StringType::get());
|
|
cls->addAttribute(tensor_attr, TensorType::get());
|
|
cls->addAttribute(tensor_list_attr, ListType::ofTensors());
|
|
Module m(cu, cls);
|
|
c10::List<at::Tensor> list({at::rand(5), at::rand(5)});
|
|
m.setattr(int_attr, IValue(2));
|
|
m.setattr(str_attr, IValue("str"));
|
|
m.setattr(tensor_attr, at::randn(5));
|
|
m.setattr(tensor_list_attr, list);
|
|
|
|
Module m2 = m.deepcopy();
|
|
Module m3 = m.clone_instance();
|
|
// Make sure copy works
|
|
ASSERT_EQ(m2.attr(int_attr).toInt(), 2);
|
|
ASSERT_EQ(m3.attr(int_attr).toInt(), 2);
|
|
|
|
// Test overlaps
|
|
ASSERT_TRUE(!IValue(m2._ivalue()).overlaps(IValue(m._ivalue())));
|
|
ASSERT_TRUE(IValue(m3._ivalue()).overlaps(IValue(m._ivalue())));
|
|
|
|
// Both deepcopy and clone_instance will preserve the type
|
|
ASSERT_EQ(m.type(), m2.type());
|
|
ASSERT_EQ(m.type(), m3.type());
|
|
|
|
// change int value of copied instances
|
|
m2.setattr(int_attr, IValue(3));
|
|
m3.setattr(int_attr, IValue(4));
|
|
// Verify value of original instance doesn't change
|
|
ASSERT_EQ(m.attr(int_attr).toInt(), 2);
|
|
ASSERT_EQ(m2.attr(int_attr).toInt(), 3);
|
|
ASSERT_EQ(m3.attr(int_attr).toInt(), 4);
|
|
|
|
// change Tensor value of copied instances
|
|
at::Tensor t1 = m.attr(tensor_attr).toTensor();
|
|
at::Tensor t2 =
|
|
m2.attr(tensor_attr).toTensor(); // deepcopy will copy the Tensor
|
|
at::Tensor t3 = m3.attr(tensor_attr)
|
|
.toTensor(); // clone_instance will not copy the Tensor
|
|
// check copy works
|
|
ASSERT_TRUE(t1.equal(t2));
|
|
ASSERT_TRUE(t1.equal(t3));
|
|
|
|
// zero out t1
|
|
t1.zero_();
|
|
// check that t2 is not affected because it is a deep copy
|
|
ASSERT_TRUE(!t1.equal(t2));
|
|
// check that t3 is the same as t1 since it is a shallow copy
|
|
ASSERT_TRUE(t1.equal(t3));
|
|
}
|
|
|
|
void testModuleDeepcopyString() {
|
|
auto cu = std::make_shared<CompilationUnit>();
|
|
auto cls = ClassType::create("foo.bar", cu, true);
|
|
auto attr1 = "attr1";
|
|
cls->addAttribute(attr1, StringType::get());
|
|
std::string str = "str";
|
|
Module m(cu, cls);
|
|
m.setattr(attr1, str);
|
|
auto copied = m.deepcopy();
|
|
auto original_str = str;
|
|
ASSERT_EQ(copied.attr(attr1).toString()->string(), original_str);
|
|
// check string mutation is not reflected in the copied module
|
|
str += "str";
|
|
ASSERT_EQ(copied.attr(attr1).toString()->string(), original_str);
|
|
}
|
|
|
|
void testModuleDeepcopyAliasing() {
|
|
// check deepcopy preserves aliasing
|
|
auto cu = std::make_shared<CompilationUnit>();
|
|
auto cls = ClassType::create("foo.bar", cu, true);
|
|
auto attr1 = "attr1";
|
|
auto attr2 = "attr2";
|
|
auto attr3 = "attr3";
|
|
auto attr4 = "attr4";
|
|
cls->addAttribute(attr1, ListType::ofTensors());
|
|
cls->addAttribute(attr2, ListType::ofTensors());
|
|
cls->addAttribute(attr3, TensorType::get());
|
|
cls->addAttribute(attr4, TensorType::get());
|
|
Module m(cu, cls);
|
|
auto t1 = at::rand(5);
|
|
auto t2 = at::rand(5);
|
|
auto t3 = at::rand(5);
|
|
auto t4 = at::rand({5, 2});
|
|
c10::List<at::Tensor> list1({t1, t2});
|
|
c10::List<at::Tensor> list2({t1, t3});
|
|
// first element of attr1 and attr2 are aliased
|
|
m.setattr(attr1, list1);
|
|
m.setattr(attr2, list2);
|
|
m.setattr(attr3, t4);
|
|
m.setattr(attr4, t4.view(-1));
|
|
|
|
auto copied = m.deepcopy();
|
|
// test tensor aliasing
|
|
auto copied_attr1_t1 = copied.attr(attr1).toList().get(0);
|
|
auto copied_attr2_t1 = copied.attr(attr2).toList().get(0);
|
|
ASSERT_TRUE(copied_attr1_t1.isAliasOf(copied_attr2_t1));
|
|
|
|
// test aliasing from view
|
|
auto copied_attr3 = copied.attr(attr3);
|
|
auto copied_attr4 = copied.attr(attr3);
|
|
ASSERT_TRUE(copied_attr3.isAliasOf(copied_attr4));
|
|
}
|
|
|
|
void testModuleConstant() {
|
|
auto cu = std::make_shared<CompilationUnit>();
|
|
auto cls = ClassType::create("foo.bar", cu, true);
|
|
auto attr_name = "attr";
|
|
auto const_name = "const";
|
|
cls->addAttribute(attr_name, IntType::get());
|
|
cls->addConstant(const_name, IValue(3));
|
|
Module m(cu, cls);
|
|
auto v = IValue(2);
|
|
m.register_attribute(attr_name, IntType::get(), v, false);
|
|
ASSERT_TRUE(m.hasattr(attr_name));
|
|
ASSERT_TRUE(m.hasattr(const_name));
|
|
ASSERT_EQ(m.attr(attr_name).toInt(), 2);
|
|
ASSERT_EQ(m.attr(const_name).toInt(), 3);
|
|
}
|
|
|
|
void testModuleParameter() {
|
|
auto cu = std::make_shared<CompilationUnit>();
|
|
auto cls = ClassType::create("foo.bar", cu, true);
|
|
Module m(cu, cls);
|
|
// Tensor parameter
|
|
m.register_parameter(
|
|
"tensor_param", at::empty({3}, at::kFloat), /* is_buffer */ false);
|
|
// None parameter
|
|
m.register_attribute(
|
|
"none_param", NoneType::get(), IValue(), /* is_param */ true);
|
|
m.register_attribute(
|
|
"none_param2", NoneType::get(), IValue(), /* is_param */ true);
|
|
auto param_list = m.parameters();
|
|
ASSERT_EQ(param_list.size(), 1);
|
|
ASSERT_TRUE(m.hasattr("tensor_param"));
|
|
ASSERT_TRUE(m.hasattr("none_param"));
|
|
ASSERT_TRUE(m.hasattr("none_param2"));
|
|
}
|
|
|
|
} // namespace jit
|
|
} // namespace torch
|