mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-06 12:20:52 +01:00
Syncing nvfuser devel branch to upstream master. https://github.com/csarofeen/pytorch/
Code changes includes:
- TransformPropagator refactor: switched to Dijkstra instead of exhaustive enumeration on all possible paths to reduce compilation time on transform propagation;
- Indexing refactor: remove reference tensor creation in all tensor indexing logic (#1690)
- (more) generic grouped grid reduction kernel;
- Minor parser/fuser patches:
1. zero-dim tensor reduction support
3. no-op binary removal within fused graph
4. expand supported in fusion
Squashed commits to WAR github API
Commits that's actually in this PR from the devel branch:
```
a054b3efcf5af58ea518de283f55aaf9fe06ff5f Refactor TransormPropagator to allow specifying a position and propagating to part of the DAG (#1775)
d67e1cda9b802036841a371318014a818a849b0a Indexing refactor stage 1: remove reference tensor creation in all tensor indexing logic (#1690)
1b6529956a1ace220898ad09dde0bf85e49827f7 Issue 1770 (#1774)
35b04276b648c9b55cdb6a67f3889f54e745c3d2 Avoid compilation errors like below: (#1773)
452c77326a340d2a4130b7802f4f319aec60e72a Ignore reductions of zero-dim tensors per PyTorch conventions (#1771)
31d6c56d88afba09ac53b2d5dd3493d625f8cd57 TransformPropagator refactor (#1769)
570c5a84b91a3cf67207331be9650d26a2d37e3d Merge pull request #1767 from csarofeen/upstream_merge_0621
9d6c3d84be86da643df6fd51695543938111f20d merging upstream
|
||
|---|---|---|
| .. | ||
| cpp | ||
| distributed | ||
| fastrnns | ||
| framework_overhead_benchmark | ||
| functional_autograd_benchmark | ||
| fuser | ||
| instruction_counts | ||
| operator_benchmark | ||
| overrides_benchmark | ||
| profiler_benchmark | ||
| record_function_benchmark | ||
| serialization | ||
| sparse | ||
| static_runtime | ||
| tensorexpr | ||
| compare-fastrnn-results.py | ||
| compare.sh | ||
| README.md | ||
| upload_scribe.py | ||
PyTorch Benchmarks
This folder contains scripts that produce reproducible timings of various PyTorch features.
It also provides mechanisms to compare PyTorch with other frameworks.
Setup environment
Make sure you're on a machine with CUDA, torchvision, and pytorch installed. Install in the following order:
# Install torchvision. It comes with the pytorch stable release binary
conda install pytorch torchvision -c pytorch
# Install the latest pytorch master from source.
# It should supersede the installation from the release binary.
cd $PYTORCH_HOME
python setup.py build develop
# Check the pytorch installation version
python -c "import torch; print(torch.__version__)"
Benchmark List
Please refer to each subfolder to discover each benchmark suite