pytorch/caffe2/python/operator_test/adam_test.py
Frank Jiang 6f0bb28afb Stop running RowWiseSparseAdam test on GPU
Reviewed By: pietern

Differential Revision: D6739194

fbshipit-source-id: 0892cdc6a575a84147f86984c67e7b4bf605a197
2018-01-17 15:05:21 -08:00

242 lines
9.5 KiB
Python
Executable File

# Copyright (c) 2016-present, Facebook, Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
##############################################################################
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
import functools
import hypothesis
from hypothesis import given
import hypothesis.strategies as st
import numpy as np
from caffe2.python import core
import caffe2.python.hypothesis_test_util as hu
class TestAdam(hu.HypothesisTestCase):
@staticmethod
def ref_adam(param, mom1, mom2, grad, LR, ITER,
beta1, beta2, epsilon):
t = ITER + 1
corrected_local_rate = LR * np.sqrt(1 - np.power(beta2, t)) / \
(1 - np.power(beta1, t))
mom1_out = (beta1 * mom1) + (1 - beta1) * grad
mom2_out = (beta2 * mom2) + (1 - beta2) * np.square(grad)
param_out = param + corrected_local_rate * mom1_out / \
(np.sqrt(mom2_out) + epsilon)
return param_out, mom1_out, mom2_out
@staticmethod
def ref_row_wise_adam(param, mom1, mom2, grad, LR, ITER,
beta1, beta2, epsilon):
t = ITER + 1
corrected_local_rate = LR * np.sqrt(1 - np.power(beta2, t)) / \
(1 - np.power(beta1, t))
mom1_out = (beta1 * mom1) + (1 - beta1) * np.mean(grad)
mom2_out = (beta2 * mom2) + (1 - beta2) * np.mean(np.square(grad))
param_out = param + corrected_local_rate * mom1_out / \
(np.sqrt(mom2_out) + epsilon)
return (param_out, mom1_out, mom2_out)
@given(inputs=hu.tensors(n=4),
ITER=st.integers(min_value=0, max_value=10000),
LR=st.floats(min_value=0.01, max_value=0.99,
allow_nan=False, allow_infinity=False),
beta1=st.floats(min_value=0.01, max_value=0.99,
allow_nan=False, allow_infinity=False),
beta2=st.floats(min_value=0.01, max_value=0.99,
allow_nan=False, allow_infinity=False),
epsilon=st.floats(min_value=0.01, max_value=0.99,
allow_nan=False, allow_infinity=False),
**hu.gcs)
def test_adam(self, inputs, ITER, LR, beta1, beta2, epsilon, gc, dc):
param, mom1, mom2, grad = inputs
ITER = np.array([ITER], dtype=np.int64)
LR = np.array([LR], dtype=np.float32)
op = core.CreateOperator(
"Adam",
["param", "mom1", "mom2", "grad", "lr", "iter"],
["output_param", "output_mom1", "output_mom2"],
beta1=beta1, beta2=beta2, epsilon=epsilon)
# Iter lives on the CPU
input_device_options = {'iter': hu.cpu_do}
self.assertReferenceChecks(
gc, op,
[param, mom1, mom2, grad, LR, ITER],
functools.partial(
self.ref_adam,
beta1=beta1, beta2=beta2, epsilon=epsilon),
input_device_options=input_device_options)
@given(inputs=hu.tensors(n=4),
ITER=st.integers(min_value=0, max_value=10000),
LR=st.floats(min_value=0.01, max_value=0.99,
allow_nan=False, allow_infinity=False),
beta1=st.floats(min_value=0.01, max_value=0.99,
allow_nan=False, allow_infinity=False),
beta2=st.floats(min_value=0.01, max_value=0.99,
allow_nan=False, allow_infinity=False),
epsilon=st.floats(min_value=0.01, max_value=0.99,
allow_nan=False, allow_infinity=False),
data_strategy=st.data(),
**hu.gcs)
def test_sparse_adam(self, inputs, ITER, LR, beta1, beta2, epsilon,
data_strategy, gc, dc):
param, mom1, mom2, grad = inputs
mom1 = np.absolute(mom1)
mom2 = np.absolute(mom2)
ITER = np.array([ITER], dtype=np.int64)
LR = np.array([LR], dtype=np.float32)
# Create an indexing array containing values which index into grad
indices = data_strategy.draw(
hu.tensor(
max_dim=1,
min_value=1,
max_value=grad.shape[0],
dtype=np.int64,
elements=st.sampled_from(np.arange(grad.shape[0])),
),
)
# Verify that the generated indices are unique
hypothesis.assume(
np.array_equal(
np.unique(indices.flatten()),
np.sort(indices.flatten())))
# Sparsify grad
grad = grad[indices]
op = core.CreateOperator(
"SparseAdam",
["param", "mom1", "mom2", "indices", "grad", "lr", "iter"],
["param", "mom1", "mom2"],
beta1=beta1, beta2=beta2, epsilon=epsilon)
def ref_sparse(param, mom1, mom2, indices, grad, LR, ITER):
param_out = np.copy(param)
mom1_out = np.copy(mom1)
mom2_out = np.copy(mom2)
for i, index in enumerate(indices):
param_out[index], mom1_out[index], mom2_out[index] = \
self.ref_adam(param[index], mom1[index], mom2[index],
grad[i], LR, ITER,
beta1, beta2, epsilon)
return (param_out, mom1_out, mom2_out)
# Iter lives on the CPU
input_device_options = {'iter': hu.cpu_do}
self.assertReferenceChecks(
gc, op,
[param, mom1, mom2, indices, grad, LR, ITER],
ref_sparse,
input_device_options=input_device_options)
@given(inputs=hu.tensors(n=2),
ITER=st.integers(min_value=0, max_value=10000),
LR=st.floats(min_value=0.01, max_value=0.99,
allow_nan=False, allow_infinity=False),
beta1=st.floats(min_value=0.01, max_value=0.99,
allow_nan=False, allow_infinity=False),
beta2=st.floats(min_value=0.01, max_value=0.99,
allow_nan=False, allow_infinity=False),
epsilon=st.floats(min_value=0.01, max_value=0.99,
allow_nan=False, allow_infinity=False),
data_strategy=st.data(),
**hu.gcs_cpu_only)
def test_row_wise_sparse_adam(self, inputs, ITER, LR, beta1, beta2, epsilon,
data_strategy, gc, dc):
param, grad = inputs
ITER = np.array([ITER], dtype=np.int64)
LR = np.array([LR], dtype=np.float32)
# Create a 1D row-wise average sum of squared gradients tensor.
mom1 = data_strategy.draw(
hu.tensor1d(min_len=param.shape[0], max_len=param.shape[0],
elements=hu.elements_of_type(dtype=np.float32))
)
mom2 = data_strategy.draw(
hu.tensor1d(min_len=param.shape[0], max_len=param.shape[0],
elements=hu.elements_of_type(dtype=np.float32))
)
mom1 = np.absolute(mom1)
mom2 = np.absolute(mom2)
# Create an indexing array containing values which index into grad
indices = data_strategy.draw(
hu.tensor(
max_dim=1,
min_value=1,
max_value=grad.shape[0],
dtype=np.int64,
elements=st.sampled_from(np.arange(grad.shape[0])),
),
)
# Note that unlike SparseAdam, RowWiseSparseAdam uses a moment
# tensor that is strictly 1-dimensional and equal in length to the
# first dimension of the parameters, so indices must also be
# 1-dimensional.
indices = indices.flatten()
hypothesis.note('indices.shape: %s' % str(indices.shape))
# Verify that the generated indices are unique
hypothesis.assume(np.array_equal(np.unique(indices), np.sort(indices)))
# Sparsify grad
grad = grad[indices]
op = core.CreateOperator(
"RowWiseSparseAdam",
["param", "mom1", "mom2", "indices", "grad", "lr", "iter"],
["param", "mom1", "mom2"],
beta1=beta1, beta2=beta2, epsilon=epsilon)
def ref_row_wise_sparse(param, mom1, mom2, indices, grad, LR, ITER):
param_out = np.copy(param)
mom1_out = np.copy(mom1)
mom2_out = np.copy(mom2)
for i, index in enumerate(indices):
param_out[index], mom1_out[index], mom2_out[index] = \
self.ref_row_wise_adam(param[index], mom1[index], mom2[index],
grad[i], LR, ITER,
beta1, beta2, epsilon)
return (param_out, mom1_out, mom2_out)
# Iter lives on the CPU
input_device_options = {'iter': hu.cpu_do}
self.assertReferenceChecks(
gc, op,
[param, mom1, mom2, indices, grad, LR, ITER],
ref_row_wise_sparse,
input_device_options=input_device_options)
if __name__ == "__main__":
import unittest
unittest.main()