mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-06 12:20:52 +01:00
Reviewed By: pietern Differential Revision: D6739194 fbshipit-source-id: 0892cdc6a575a84147f86984c67e7b4bf605a197
242 lines
9.5 KiB
Python
Executable File
242 lines
9.5 KiB
Python
Executable File
# Copyright (c) 2016-present, Facebook, Inc.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
##############################################################################
|
|
|
|
from __future__ import absolute_import
|
|
from __future__ import division
|
|
from __future__ import print_function
|
|
from __future__ import unicode_literals
|
|
|
|
import functools
|
|
|
|
import hypothesis
|
|
from hypothesis import given
|
|
import hypothesis.strategies as st
|
|
import numpy as np
|
|
|
|
from caffe2.python import core
|
|
import caffe2.python.hypothesis_test_util as hu
|
|
|
|
|
|
class TestAdam(hu.HypothesisTestCase):
|
|
|
|
@staticmethod
|
|
def ref_adam(param, mom1, mom2, grad, LR, ITER,
|
|
beta1, beta2, epsilon):
|
|
t = ITER + 1
|
|
corrected_local_rate = LR * np.sqrt(1 - np.power(beta2, t)) / \
|
|
(1 - np.power(beta1, t))
|
|
mom1_out = (beta1 * mom1) + (1 - beta1) * grad
|
|
mom2_out = (beta2 * mom2) + (1 - beta2) * np.square(grad)
|
|
param_out = param + corrected_local_rate * mom1_out / \
|
|
(np.sqrt(mom2_out) + epsilon)
|
|
return param_out, mom1_out, mom2_out
|
|
|
|
@staticmethod
|
|
def ref_row_wise_adam(param, mom1, mom2, grad, LR, ITER,
|
|
beta1, beta2, epsilon):
|
|
t = ITER + 1
|
|
corrected_local_rate = LR * np.sqrt(1 - np.power(beta2, t)) / \
|
|
(1 - np.power(beta1, t))
|
|
mom1_out = (beta1 * mom1) + (1 - beta1) * np.mean(grad)
|
|
mom2_out = (beta2 * mom2) + (1 - beta2) * np.mean(np.square(grad))
|
|
param_out = param + corrected_local_rate * mom1_out / \
|
|
(np.sqrt(mom2_out) + epsilon)
|
|
return (param_out, mom1_out, mom2_out)
|
|
|
|
|
|
@given(inputs=hu.tensors(n=4),
|
|
ITER=st.integers(min_value=0, max_value=10000),
|
|
LR=st.floats(min_value=0.01, max_value=0.99,
|
|
allow_nan=False, allow_infinity=False),
|
|
beta1=st.floats(min_value=0.01, max_value=0.99,
|
|
allow_nan=False, allow_infinity=False),
|
|
beta2=st.floats(min_value=0.01, max_value=0.99,
|
|
allow_nan=False, allow_infinity=False),
|
|
epsilon=st.floats(min_value=0.01, max_value=0.99,
|
|
allow_nan=False, allow_infinity=False),
|
|
**hu.gcs)
|
|
def test_adam(self, inputs, ITER, LR, beta1, beta2, epsilon, gc, dc):
|
|
param, mom1, mom2, grad = inputs
|
|
ITER = np.array([ITER], dtype=np.int64)
|
|
LR = np.array([LR], dtype=np.float32)
|
|
|
|
op = core.CreateOperator(
|
|
"Adam",
|
|
["param", "mom1", "mom2", "grad", "lr", "iter"],
|
|
["output_param", "output_mom1", "output_mom2"],
|
|
beta1=beta1, beta2=beta2, epsilon=epsilon)
|
|
|
|
# Iter lives on the CPU
|
|
input_device_options = {'iter': hu.cpu_do}
|
|
|
|
self.assertReferenceChecks(
|
|
gc, op,
|
|
[param, mom1, mom2, grad, LR, ITER],
|
|
functools.partial(
|
|
self.ref_adam,
|
|
beta1=beta1, beta2=beta2, epsilon=epsilon),
|
|
input_device_options=input_device_options)
|
|
|
|
@given(inputs=hu.tensors(n=4),
|
|
ITER=st.integers(min_value=0, max_value=10000),
|
|
LR=st.floats(min_value=0.01, max_value=0.99,
|
|
allow_nan=False, allow_infinity=False),
|
|
beta1=st.floats(min_value=0.01, max_value=0.99,
|
|
allow_nan=False, allow_infinity=False),
|
|
beta2=st.floats(min_value=0.01, max_value=0.99,
|
|
allow_nan=False, allow_infinity=False),
|
|
epsilon=st.floats(min_value=0.01, max_value=0.99,
|
|
allow_nan=False, allow_infinity=False),
|
|
data_strategy=st.data(),
|
|
**hu.gcs)
|
|
def test_sparse_adam(self, inputs, ITER, LR, beta1, beta2, epsilon,
|
|
data_strategy, gc, dc):
|
|
param, mom1, mom2, grad = inputs
|
|
mom1 = np.absolute(mom1)
|
|
mom2 = np.absolute(mom2)
|
|
ITER = np.array([ITER], dtype=np.int64)
|
|
LR = np.array([LR], dtype=np.float32)
|
|
|
|
# Create an indexing array containing values which index into grad
|
|
indices = data_strategy.draw(
|
|
hu.tensor(
|
|
max_dim=1,
|
|
min_value=1,
|
|
max_value=grad.shape[0],
|
|
dtype=np.int64,
|
|
elements=st.sampled_from(np.arange(grad.shape[0])),
|
|
),
|
|
)
|
|
|
|
# Verify that the generated indices are unique
|
|
hypothesis.assume(
|
|
np.array_equal(
|
|
np.unique(indices.flatten()),
|
|
np.sort(indices.flatten())))
|
|
|
|
# Sparsify grad
|
|
grad = grad[indices]
|
|
|
|
op = core.CreateOperator(
|
|
"SparseAdam",
|
|
["param", "mom1", "mom2", "indices", "grad", "lr", "iter"],
|
|
["param", "mom1", "mom2"],
|
|
beta1=beta1, beta2=beta2, epsilon=epsilon)
|
|
|
|
def ref_sparse(param, mom1, mom2, indices, grad, LR, ITER):
|
|
param_out = np.copy(param)
|
|
mom1_out = np.copy(mom1)
|
|
mom2_out = np.copy(mom2)
|
|
for i, index in enumerate(indices):
|
|
param_out[index], mom1_out[index], mom2_out[index] = \
|
|
self.ref_adam(param[index], mom1[index], mom2[index],
|
|
grad[i], LR, ITER,
|
|
beta1, beta2, epsilon)
|
|
return (param_out, mom1_out, mom2_out)
|
|
|
|
# Iter lives on the CPU
|
|
input_device_options = {'iter': hu.cpu_do}
|
|
|
|
self.assertReferenceChecks(
|
|
gc, op,
|
|
[param, mom1, mom2, indices, grad, LR, ITER],
|
|
ref_sparse,
|
|
input_device_options=input_device_options)
|
|
|
|
@given(inputs=hu.tensors(n=2),
|
|
ITER=st.integers(min_value=0, max_value=10000),
|
|
LR=st.floats(min_value=0.01, max_value=0.99,
|
|
allow_nan=False, allow_infinity=False),
|
|
beta1=st.floats(min_value=0.01, max_value=0.99,
|
|
allow_nan=False, allow_infinity=False),
|
|
beta2=st.floats(min_value=0.01, max_value=0.99,
|
|
allow_nan=False, allow_infinity=False),
|
|
epsilon=st.floats(min_value=0.01, max_value=0.99,
|
|
allow_nan=False, allow_infinity=False),
|
|
data_strategy=st.data(),
|
|
**hu.gcs_cpu_only)
|
|
def test_row_wise_sparse_adam(self, inputs, ITER, LR, beta1, beta2, epsilon,
|
|
data_strategy, gc, dc):
|
|
param, grad = inputs
|
|
ITER = np.array([ITER], dtype=np.int64)
|
|
LR = np.array([LR], dtype=np.float32)
|
|
|
|
# Create a 1D row-wise average sum of squared gradients tensor.
|
|
mom1 = data_strategy.draw(
|
|
hu.tensor1d(min_len=param.shape[0], max_len=param.shape[0],
|
|
elements=hu.elements_of_type(dtype=np.float32))
|
|
)
|
|
mom2 = data_strategy.draw(
|
|
hu.tensor1d(min_len=param.shape[0], max_len=param.shape[0],
|
|
elements=hu.elements_of_type(dtype=np.float32))
|
|
)
|
|
mom1 = np.absolute(mom1)
|
|
mom2 = np.absolute(mom2)
|
|
|
|
# Create an indexing array containing values which index into grad
|
|
indices = data_strategy.draw(
|
|
hu.tensor(
|
|
max_dim=1,
|
|
min_value=1,
|
|
max_value=grad.shape[0],
|
|
dtype=np.int64,
|
|
elements=st.sampled_from(np.arange(grad.shape[0])),
|
|
),
|
|
)
|
|
|
|
# Note that unlike SparseAdam, RowWiseSparseAdam uses a moment
|
|
# tensor that is strictly 1-dimensional and equal in length to the
|
|
# first dimension of the parameters, so indices must also be
|
|
# 1-dimensional.
|
|
indices = indices.flatten()
|
|
|
|
hypothesis.note('indices.shape: %s' % str(indices.shape))
|
|
|
|
# Verify that the generated indices are unique
|
|
hypothesis.assume(np.array_equal(np.unique(indices), np.sort(indices)))
|
|
|
|
# Sparsify grad
|
|
grad = grad[indices]
|
|
|
|
op = core.CreateOperator(
|
|
"RowWiseSparseAdam",
|
|
["param", "mom1", "mom2", "indices", "grad", "lr", "iter"],
|
|
["param", "mom1", "mom2"],
|
|
beta1=beta1, beta2=beta2, epsilon=epsilon)
|
|
|
|
def ref_row_wise_sparse(param, mom1, mom2, indices, grad, LR, ITER):
|
|
param_out = np.copy(param)
|
|
mom1_out = np.copy(mom1)
|
|
mom2_out = np.copy(mom2)
|
|
for i, index in enumerate(indices):
|
|
param_out[index], mom1_out[index], mom2_out[index] = \
|
|
self.ref_row_wise_adam(param[index], mom1[index], mom2[index],
|
|
grad[i], LR, ITER,
|
|
beta1, beta2, epsilon)
|
|
return (param_out, mom1_out, mom2_out)
|
|
|
|
# Iter lives on the CPU
|
|
input_device_options = {'iter': hu.cpu_do}
|
|
|
|
self.assertReferenceChecks(
|
|
gc, op,
|
|
[param, mom1, mom2, indices, grad, LR, ITER],
|
|
ref_row_wise_sparse,
|
|
input_device_options=input_device_options)
|
|
|
|
if __name__ == "__main__":
|
|
import unittest
|
|
unittest.main()
|