mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-06 12:20:52 +01:00
Summary: This is a stack PR based on https://github.com/pytorch/pytorch/pull/14454. It enables the restoring the storage to appropriate device. ~~[TODO]: add/modify appropriate tests~~ Done Pull Request resolved: https://github.com/pytorch/pytorch/pull/14711 Reviewed By: dzhulgakov Differential Revision: D13315746 Pulled By: houseroad fbshipit-source-id: fe6f24a45c35e88fd1a2eebc09950d4430fac185
272 lines
7.3 KiB
C++
272 lines
7.3 KiB
C++
#include <gtest/gtest.h>
|
|
|
|
#include <torch/nn/modules/functional.h>
|
|
#include <torch/nn/modules/linear.h>
|
|
#include <torch/nn/modules/sequential.h>
|
|
#include <torch/optim/optimizer.h>
|
|
#include <torch/optim/sgd.h>
|
|
#include <torch/serialize.h>
|
|
#include <torch/types.h>
|
|
#include <torch/utils.h>
|
|
|
|
#include <test/cpp/api/support.h>
|
|
|
|
#include <cstdio>
|
|
#include <memory>
|
|
#include <sstream>
|
|
#include <string>
|
|
#include <vector>
|
|
|
|
using namespace torch::nn;
|
|
using namespace torch::serialize;
|
|
|
|
namespace {
|
|
Sequential xor_model() {
|
|
return Sequential(
|
|
Linear(2, 8),
|
|
Functional(at::sigmoid),
|
|
Linear(8, 1),
|
|
Functional(at::sigmoid));
|
|
}
|
|
|
|
torch::Tensor save_and_load(torch::Tensor input) {
|
|
std::stringstream stream;
|
|
torch::save(input, stream);
|
|
torch::Tensor tensor;
|
|
torch::load(tensor, stream);
|
|
return tensor;
|
|
}
|
|
} // namespace
|
|
|
|
TEST(SerializeTest, Basic) {
|
|
torch::manual_seed(0);
|
|
|
|
auto x = torch::randn({5, 5});
|
|
auto y = save_and_load(x);
|
|
|
|
ASSERT_TRUE(y.defined());
|
|
ASSERT_EQ(x.sizes().vec(), y.sizes().vec());
|
|
ASSERT_TRUE(x.allclose(y));
|
|
}
|
|
|
|
TEST(SerializeTest, BasicToFile) {
|
|
torch::manual_seed(0);
|
|
|
|
auto x = torch::randn({5, 5});
|
|
|
|
auto tempfile = torch::utils::make_tempfile();
|
|
torch::save(x, tempfile.name);
|
|
|
|
torch::Tensor y;
|
|
torch::load(y, tempfile.name);
|
|
|
|
ASSERT_TRUE(y.defined());
|
|
ASSERT_EQ(x.sizes().vec(), y.sizes().vec());
|
|
ASSERT_TRUE(x.allclose(y));
|
|
}
|
|
|
|
TEST(SerializeTest, Resized) {
|
|
torch::manual_seed(0);
|
|
|
|
auto x = torch::randn({11, 5});
|
|
x.resize_({5, 5});
|
|
auto y = save_and_load(x);
|
|
|
|
ASSERT_TRUE(y.defined());
|
|
ASSERT_EQ(x.sizes().vec(), y.sizes().vec());
|
|
ASSERT_TRUE(x.allclose(y));
|
|
}
|
|
|
|
TEST(SerializeTest, Sliced) {
|
|
torch::manual_seed(0);
|
|
|
|
auto x = torch::randn({11, 5});
|
|
x = x.slice(0, 1, 5);
|
|
auto y = save_and_load(x);
|
|
|
|
ASSERT_TRUE(y.defined());
|
|
ASSERT_EQ(x.sizes().vec(), y.sizes().vec());
|
|
ASSERT_TRUE(x.allclose(y));
|
|
}
|
|
|
|
TEST(SerializeTest, NonContiguous) {
|
|
torch::manual_seed(0);
|
|
|
|
auto x = torch::randn({11, 5});
|
|
x = x.slice(1, 1, 4);
|
|
auto y = save_and_load(x);
|
|
|
|
ASSERT_TRUE(y.defined());
|
|
ASSERT_EQ(x.sizes().vec(), y.sizes().vec());
|
|
ASSERT_TRUE(x.allclose(y));
|
|
}
|
|
|
|
TEST(SerializeTest, XOR) {
|
|
// We better be able to save and load an XOR model!
|
|
auto getLoss = [](Sequential model, uint32_t batch_size) {
|
|
auto inputs = torch::empty({batch_size, 2});
|
|
auto labels = torch::empty({batch_size});
|
|
for (size_t i = 0; i < batch_size; i++) {
|
|
inputs[i] = torch::randint(2, {2}, torch::kInt64);
|
|
labels[i] = inputs[i][0].item<int64_t>() ^ inputs[i][1].item<int64_t>();
|
|
}
|
|
auto x = model->forward<torch::Tensor>(inputs);
|
|
return torch::binary_cross_entropy(x, labels);
|
|
};
|
|
|
|
auto model = xor_model();
|
|
auto model2 = xor_model();
|
|
auto model3 = xor_model();
|
|
auto optimizer = torch::optim::SGD(
|
|
model->parameters(),
|
|
torch::optim::SGDOptions(1e-1).momentum(0.9).nesterov(true).weight_decay(
|
|
1e-6));
|
|
|
|
float running_loss = 1;
|
|
int epoch = 0;
|
|
while (running_loss > 0.1) {
|
|
torch::Tensor loss = getLoss(model, 4);
|
|
optimizer.zero_grad();
|
|
loss.backward();
|
|
optimizer.step();
|
|
|
|
running_loss = running_loss * 0.99 + loss.sum().item<float>() * 0.01;
|
|
ASSERT_LT(epoch, 3000);
|
|
epoch++;
|
|
}
|
|
|
|
auto tempfile = torch::utils::make_tempfile();
|
|
torch::save(model, tempfile.name);
|
|
torch::load(model2, tempfile.name);
|
|
|
|
auto loss = getLoss(model2, 100);
|
|
ASSERT_LT(loss.item<float>(), 0.1);
|
|
}
|
|
|
|
TEST(SerializeTest, Optim) {
|
|
auto model1 = Linear(5, 2);
|
|
auto model2 = Linear(5, 2);
|
|
auto model3 = Linear(5, 2);
|
|
|
|
// Models 1, 2, 3 will have the same parameters.
|
|
auto model_tempfile = torch::utils::make_tempfile();
|
|
torch::save(model1, model_tempfile.name);
|
|
torch::load(model2, model_tempfile.name);
|
|
torch::load(model3, model_tempfile.name);
|
|
|
|
auto param1 = model1->named_parameters();
|
|
auto param2 = model2->named_parameters();
|
|
auto param3 = model3->named_parameters();
|
|
for (const auto& p : param1) {
|
|
ASSERT_TRUE(p->allclose(param2[p.key()]));
|
|
ASSERT_TRUE(param2[p.key()].allclose(param3[p.key()]));
|
|
}
|
|
|
|
// Make some optimizers with momentum (and thus state)
|
|
auto optim1 = torch::optim::SGD(
|
|
model1->parameters(), torch::optim::SGDOptions(1e-1).momentum(0.9));
|
|
auto optim2 = torch::optim::SGD(
|
|
model2->parameters(), torch::optim::SGDOptions(1e-1).momentum(0.9));
|
|
auto optim2_2 = torch::optim::SGD(
|
|
model2->parameters(), torch::optim::SGDOptions(1e-1).momentum(0.9));
|
|
auto optim3 = torch::optim::SGD(
|
|
model3->parameters(), torch::optim::SGDOptions(1e-1).momentum(0.9));
|
|
auto optim3_2 = torch::optim::SGD(
|
|
model3->parameters(), torch::optim::SGDOptions(1e-1).momentum(0.9));
|
|
|
|
auto x = torch::ones({10, 5});
|
|
|
|
auto step = [&x](torch::optim::Optimizer& optimizer, Linear model) {
|
|
optimizer.zero_grad();
|
|
auto y = model->forward(x).sum();
|
|
y.backward();
|
|
optimizer.step();
|
|
};
|
|
|
|
// Do 2 steps of model1
|
|
step(optim1, model1);
|
|
step(optim1, model1);
|
|
|
|
// Do 2 steps of model 2 without saving the optimizer
|
|
step(optim2, model2);
|
|
step(optim2_2, model2);
|
|
|
|
// Do 2 steps of model 3 while saving the optimizer
|
|
step(optim3, model3);
|
|
|
|
auto optim_tempfile = torch::utils::make_tempfile();
|
|
torch::save(optim3, optim_tempfile.name);
|
|
torch::load(optim3_2, optim_tempfile.name);
|
|
step(optim3_2, model3);
|
|
|
|
param1 = model1->named_parameters();
|
|
param2 = model2->named_parameters();
|
|
param3 = model3->named_parameters();
|
|
for (const auto& p : param1) {
|
|
const auto& name = p.key();
|
|
// Model 1 and 3 should be the same
|
|
ASSERT_TRUE(
|
|
param1[name].norm().item<float>() == param3[name].norm().item<float>());
|
|
ASSERT_TRUE(
|
|
param1[name].norm().item<float>() != param2[name].norm().item<float>());
|
|
}
|
|
}
|
|
|
|
TEST(SerializeTest, XOR_CUDA) {
|
|
torch::manual_seed(0);
|
|
// We better be able to save and load a XOR model!
|
|
auto getLoss = [](Sequential model, uint32_t batch_size, bool is_cuda=false) {
|
|
auto inputs = torch::empty({batch_size, 2});
|
|
auto labels = torch::empty({batch_size});
|
|
if (is_cuda) {
|
|
inputs = inputs.cuda();
|
|
labels = labels.cuda();
|
|
}
|
|
for (size_t i = 0; i < batch_size; i++) {
|
|
inputs[i] = torch::randint(2, {2}, torch::kInt64);
|
|
labels[i] = inputs[i][0].item<int64_t>() ^ inputs[i][1].item<int64_t>();
|
|
}
|
|
auto x = model->forward<torch::Tensor>(inputs);
|
|
return torch::binary_cross_entropy(x, labels);
|
|
};
|
|
|
|
auto model = xor_model();
|
|
auto model2 = xor_model();
|
|
auto model3 = xor_model();
|
|
auto optimizer = torch::optim::SGD(
|
|
model->parameters(),
|
|
torch::optim::SGDOptions(1e-1).momentum(0.9).nesterov(true).weight_decay(
|
|
1e-6));
|
|
|
|
float running_loss = 1;
|
|
int epoch = 0;
|
|
while (running_loss > 0.1) {
|
|
torch::Tensor loss = getLoss(model, 4);
|
|
optimizer.zero_grad();
|
|
loss.backward();
|
|
optimizer.step();
|
|
|
|
running_loss = running_loss * 0.99 + loss.sum().item<float>() * 0.01;
|
|
ASSERT_LT(epoch, 3000);
|
|
epoch++;
|
|
}
|
|
|
|
auto tempfile = torch::utils::make_tempfile();
|
|
torch::save(model, tempfile.name);
|
|
torch::load(model2, tempfile.name);
|
|
|
|
auto loss = getLoss(model2, 100);
|
|
ASSERT_LT(loss.item<float>(), 0.1);
|
|
|
|
model2->to(torch::kCUDA);
|
|
loss = getLoss(model2, 100, true);
|
|
ASSERT_LT(loss.item<float>(), 0.1);
|
|
|
|
auto tempfile2 = torch::utils::make_tempfile();
|
|
torch::save(model2, tempfile2.name);
|
|
torch::load(model3, tempfile2.name);
|
|
|
|
loss = getLoss(model3, 100, true);
|
|
ASSERT_LT(loss.item<float>(), 0.1);
|
|
}
|