pytorch/test/test_cpp_extensions_jit.py
Mike Ruberry 6ddca30b2d Updates assertEqual to require atol and rtol, removes positional atol (#38872)
Summary:
This updates assertEqual and assertEqual-like functions to either require both or neither of atol and rtol be specified. This should improve clarity around handling precision in the test suite, and it allows us to remove the legacy positional atol argument from assertEqual. In addition, the "message" kwarg is replace with a kwarg-only "msg" argument whose name is consistent with unittest's assertEqual argument.

In the future we could make "msg" an optional third positional argument to be more consistent with unittest's assertEqual, but requiring it be specified should be clear, and we can easily update the signature to make "msg" an optional positional argument in the future, too.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/38872

Differential Revision: D21717199

Pulled By: mruberry

fbshipit-source-id: 9feb856f94eee911b44f6c7140a1d07c1b026d3a
2020-05-26 08:30:23 -07:00

841 lines
31 KiB
Python

import os
import shutil
import sys
import unittest
import warnings
import re
import tempfile
import subprocess
import glob
import torch.testing._internal.common_utils as common
import torch
import torch.backends.cudnn
import torch.utils.cpp_extension
from torch.utils.cpp_extension import CUDA_HOME, ROCM_HOME
from torch.autograd.gradcheck import gradcheck
TEST_CUDA = torch.cuda.is_available() and CUDA_HOME is not None
TEST_CUDNN = False
TEST_ROCM = torch.cuda.is_available() and torch.version.hip is not None and ROCM_HOME is not None
if TEST_CUDA and torch.version.cuda is not None: # the skip CUDNN test for ROCm
CUDNN_HEADER_EXISTS = os.path.isfile(os.path.join(CUDA_HOME, "include/cudnn.h"))
TEST_CUDNN = (
TEST_CUDA and CUDNN_HEADER_EXISTS and torch.backends.cudnn.is_available()
)
IS_WINDOWS = sys.platform == "win32"
# This effectively allows re-using the same extension (compiled once) in
# multiple tests, just to split up the tested properties.
def dont_wipe_extensions_build_folder(func):
func.dont_wipe = True
return func
class TestCppExtensionJIT(common.TestCase):
"""Tests just-in-time cpp extensions.
Don't confuse this with the PyTorch JIT (aka TorchScript).
"""
def setUp(self):
# cpp extensions use relative paths. Those paths are relative to
# this file, so we'll change the working directory temporarily
self.old_working_dir = os.getcwd()
os.chdir(os.path.dirname(os.path.abspath(__file__)))
test_name = self.id().split(".")[-1]
dont_wipe = hasattr(getattr(self, test_name), "dont_wipe")
if dont_wipe:
print(
"Test case {} has 'dont_wipe' attribute set, ".format(test_name)
+ "therefore not wiping extensions build folder before running the test"
)
return
if sys.platform == "win32":
print("Not wiping extensions build folder because Windows")
return
default_build_root = torch.utils.cpp_extension.get_default_build_root()
if os.path.exists(default_build_root):
shutil.rmtree(default_build_root)
def tearDown(self):
# return the working directory (see setUp)
os.chdir(self.old_working_dir)
@classmethod
def tearDownClass(cls):
if sys.platform == "win32":
print("Not wiping extensions build folder because Windows")
return
default_build_root = torch.utils.cpp_extension.get_default_build_root()
if os.path.exists(default_build_root):
shutil.rmtree(default_build_root)
def test_jit_compile_extension(self):
module = torch.utils.cpp_extension.load(
name="jit_extension",
sources=[
"cpp_extensions/jit_extension.cpp",
"cpp_extensions/jit_extension2.cpp",
],
extra_include_paths=["cpp_extensions"],
extra_cflags=["-g"],
verbose=True,
)
x = torch.randn(4, 4)
y = torch.randn(4, 4)
z = module.tanh_add(x, y)
self.assertEqual(z, x.tanh() + y.tanh())
# Checking we can call a method defined not in the main C++ file.
z = module.exp_add(x, y)
self.assertEqual(z, x.exp() + y.exp())
# Checking we can use this JIT-compiled class.
doubler = module.Doubler(2, 2)
self.assertIsNone(doubler.get().grad)
self.assertEqual(doubler.get().sum(), 4)
self.assertEqual(doubler.forward().sum(), 8)
@unittest.skipIf(not TEST_CUDA, "CUDA not found")
def test_jit_cuda_extension(self):
# NOTE: The name of the extension must equal the name of the module.
module = torch.utils.cpp_extension.load(
name="torch_test_cuda_extension",
sources=[
"cpp_extensions/cuda_extension.cpp",
"cpp_extensions/cuda_extension.cu",
],
extra_cuda_cflags=["-O2"],
verbose=True,
keep_intermediates=False,
)
x = torch.zeros(100, device="cuda", dtype=torch.float32)
y = torch.zeros(100, device="cuda", dtype=torch.float32)
z = module.sigmoid_add(x, y).cpu()
# 2 * sigmoid(0) = 2 * 0.5 = 1
self.assertEqual(z, torch.ones_like(z))
def _run_jit_cuda_archflags(self, flags, expected):
# Compile an extension with given `flags`
def _check_cuobjdump_output(expected_values, is_ptx=False):
elf_or_ptx = '--list-ptx' if is_ptx else '--list-elf'
lib_ext = '.pyd' if IS_WINDOWS else '.so'
# Note, .extension name may include _v1, _v2, so first find exact name
ext_filename = glob.glob(os.path.join(temp_dir,
'cudaext_archflag*' + lib_ext))[0]
command = ['cuobjdump', elf_or_ptx, ext_filename]
p = subprocess.Popen(command,
stdout=subprocess.PIPE,
stderr=subprocess.PIPE)
output, err = p.communicate()
output = output.decode("ascii")
err = err.decode("ascii")
if not p.returncode == 0 or not err == '':
raise AssertionError("Flags: {}\nReturncode: {}\nStderr: {}\n"
"Output: {} ".format(flags, p.returncode,
err, output))
actual_arches = sorted(re.findall(r'sm_\d\d', output))
expected_arches = ['sm_' + xx for xx in expected_values]
self.assertEqual(actual_arches, expected_arches,
msg="Flags: {}, Actual: {}, Expected: {}\n"
"Stderr: {}\nOutput: {}".format(
flags, actual_arches, expected_arches,
err, output))
temp_dir = tempfile.mkdtemp()
old_envvar = os.environ.get('TORCH_CUDA_ARCH_LIST', None)
try:
os.environ['TORCH_CUDA_ARCH_LIST'] = flags
torch.utils.cpp_extension.load(
name="cudaext_archflags",
sources=[
"cpp_extensions/cuda_extension.cpp",
"cpp_extensions/cuda_extension.cu",
],
extra_cuda_cflags=["-O2"],
verbose=True,
build_directory=temp_dir,
)
# Expected output for --list-elf:
# ELF file 1: cudaext_archflags.1.sm_61.cubin
# ELF file 2: cudaext_archflags.2.sm_52.cubin
_check_cuobjdump_output(expected[0])
if expected[1] is not None:
# Expected output for --list-ptx:
# PTX file 1: cudaext_archflags.1.sm_61.ptx
_check_cuobjdump_output(expected[1], is_ptx=True)
finally:
if IS_WINDOWS:
print("Not wiping extensions build folder because Windows")
else:
shutil.rmtree(temp_dir)
if old_envvar is None:
os.environ.pop('TORCH_CUDA_ARCH_LIST')
else:
os.environ['TORCH_CUDA_ARCH_LIST'] = old_envvar
@unittest.skipIf(not TEST_CUDA, "CUDA not found")
@unittest.skipIf(TEST_ROCM, "disabled on rocm")
def test_jit_cuda_archflags(self):
# Test a number of combinations:
# - the default for the machine we're testing on
# - Separators, can be ';' (most common) or ' '
# - Architecture names
# - With/without '+PTX'
capability = torch.cuda.get_device_capability()
# expected values is length-2 tuple: (list of ELF, list of PTX)
# note: there should not be more than one PTX value
archflags = {
'': (['{}{}'.format(capability[0], capability[1])], None),
"Maxwell+Tegra;6.1": (['53', '61'], None),
"Pascal 3.5": (['35', '60', '61'], None),
"Volta": (['70'], ['70']),
}
if int(torch.version.cuda.split('.')[0]) >= 10:
# CUDA 9 only supports compute capability <= 7.2
archflags["7.5+PTX"] = (['75'], ['75'])
archflags["5.0;6.0+PTX;7.0;7.5"] = (['50', '60', '70', '75'], ['60'])
for flags, expected in archflags.items():
self._run_jit_cuda_archflags(flags, expected)
@unittest.skipIf(not TEST_CUDNN, "CuDNN not found")
def test_jit_cudnn_extension(self):
# implementation of CuDNN ReLU
if IS_WINDOWS:
extra_ldflags = ["cudnn.lib"]
else:
extra_ldflags = ["-lcudnn"]
module = torch.utils.cpp_extension.load(
name="torch_test_cudnn_extension",
sources=["cpp_extensions/cudnn_extension.cpp"],
extra_ldflags=extra_ldflags,
verbose=True,
with_cuda=True,
)
x = torch.randn(100, device="cuda", dtype=torch.float32)
y = torch.zeros(100, device="cuda", dtype=torch.float32)
module.cudnn_relu(x, y) # y=relu(x)
self.assertEqual(torch.nn.functional.relu(x), y)
with self.assertRaisesRegex(RuntimeError, "same size"):
y_incorrect = torch.zeros(20, device="cuda", dtype=torch.float32)
module.cudnn_relu(x, y_incorrect)
def test_inline_jit_compile_extension_with_functions_as_list(self):
cpp_source = """
torch::Tensor tanh_add(torch::Tensor x, torch::Tensor y) {
return x.tanh() + y.tanh();
}
"""
module = torch.utils.cpp_extension.load_inline(
name="inline_jit_extension_with_functions_list",
cpp_sources=cpp_source,
functions="tanh_add",
verbose=True,
)
self.assertEqual(module.tanh_add.__doc__.split("\n")[2], "tanh_add")
x = torch.randn(4, 4)
y = torch.randn(4, 4)
z = module.tanh_add(x, y)
self.assertEqual(z, x.tanh() + y.tanh())
def test_inline_jit_compile_extension_with_functions_as_dict(self):
cpp_source = """
torch::Tensor tanh_add(torch::Tensor x, torch::Tensor y) {
return x.tanh() + y.tanh();
}
"""
module = torch.utils.cpp_extension.load_inline(
name="inline_jit_extension_with_functions_dict",
cpp_sources=cpp_source,
functions={"tanh_add": "Tanh and then sum :D"},
verbose=True,
)
self.assertEqual(module.tanh_add.__doc__.split("\n")[2], "Tanh and then sum :D")
def test_inline_jit_compile_extension_multiple_sources_and_no_functions(self):
cpp_source1 = """
torch::Tensor sin_add(torch::Tensor x, torch::Tensor y) {
return x.sin() + y.sin();
}
"""
cpp_source2 = """
#include <torch/extension.h>
torch::Tensor sin_add(torch::Tensor x, torch::Tensor y);
PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
m.def("sin_add", &sin_add, "sin(x) + sin(y)");
}
"""
module = torch.utils.cpp_extension.load_inline(
name="inline_jit_extension",
cpp_sources=[cpp_source1, cpp_source2],
verbose=True,
)
x = torch.randn(4, 4)
y = torch.randn(4, 4)
z = module.sin_add(x, y)
self.assertEqual(z, x.sin() + y.sin())
@unittest.skipIf(not TEST_CUDA, "CUDA not found")
def test_inline_jit_compile_extension_cuda(self):
cuda_source = """
__global__ void cos_add_kernel(
const float* __restrict__ x,
const float* __restrict__ y,
float* __restrict__ output,
const int size) {
const auto index = blockIdx.x * blockDim.x + threadIdx.x;
if (index < size) {
output[index] = __cosf(x[index]) + __cosf(y[index]);
}
}
torch::Tensor cos_add(torch::Tensor x, torch::Tensor y) {
auto output = torch::zeros_like(x);
const int threads = 1024;
const int blocks = (output.numel() + threads - 1) / threads;
cos_add_kernel<<<blocks, threads>>>(x.data<float>(), y.data<float>(), output.data<float>(), output.numel());
return output;
}
"""
# Here, the C++ source need only declare the function signature.
cpp_source = "torch::Tensor cos_add(torch::Tensor x, torch::Tensor y);"
module = torch.utils.cpp_extension.load_inline(
name="inline_jit_extension_cuda",
cpp_sources=cpp_source,
cuda_sources=cuda_source,
functions=["cos_add"],
verbose=True,
)
self.assertEqual(module.cos_add.__doc__.split("\n")[2], "cos_add")
x = torch.randn(4, 4, device="cuda", dtype=torch.float32)
y = torch.randn(4, 4, device="cuda", dtype=torch.float32)
z = module.cos_add(x, y)
self.assertEqual(z, x.cos() + y.cos())
def test_inline_jit_compile_extension_throws_when_functions_is_bad(self):
with self.assertRaises(ValueError):
torch.utils.cpp_extension.load_inline(
name="invalid_jit_extension", cpp_sources="", functions=5
)
def test_lenient_flag_handling_in_jit_extensions(self):
cpp_source = """
torch::Tensor tanh_add(torch::Tensor x, torch::Tensor y) {
return x.tanh() + y.tanh();
}
"""
module = torch.utils.cpp_extension.load_inline(
name="lenient_flag_handling_extension",
cpp_sources=cpp_source,
functions="tanh_add",
extra_cflags=["-g\n\n", "-O0 -Wall"],
extra_include_paths=[" cpp_extensions\n"],
verbose=True,
)
x = torch.zeros(100, dtype=torch.float32)
y = torch.zeros(100, dtype=torch.float32)
z = module.tanh_add(x, y).cpu()
self.assertEqual(z, x.tanh() + y.tanh())
@unittest.skipIf(not TEST_CUDA, "CUDA not found")
def test_half_support(self):
"""
Checks for an issue with operator< ambiguity for half when certain
THC headers are included.
See https://github.com/pytorch/pytorch/pull/10301#issuecomment-416773333
for the corresponding issue.
"""
cuda_source = """
#include <THC/THCNumerics.cuh>
template<typename T, typename U>
__global__ void half_test_kernel(const T* input, U* output) {
if (input[0] < input[1] || input[0] >= input[1]) {
output[0] = 123;
}
}
torch::Tensor half_test(torch::Tensor input) {
auto output = torch::empty(1, input.options().dtype(torch::kFloat));
AT_DISPATCH_FLOATING_TYPES_AND_HALF(input.scalar_type(), "half_test", [&] {
half_test_kernel<scalar_t><<<1, 1>>>(
input.data<scalar_t>(),
output.data<float>());
});
return output;
}
"""
module = torch.utils.cpp_extension.load_inline(
name="half_test_extension",
cpp_sources="torch::Tensor half_test(torch::Tensor input);",
cuda_sources=cuda_source,
functions=["half_test"],
verbose=True,
)
x = torch.randn(3, device="cuda", dtype=torch.half)
result = module.half_test(x)
self.assertEqual(result[0], 123)
def test_reload_jit_extension(self):
def compile(code):
return torch.utils.cpp_extension.load_inline(
name="reloaded_jit_extension",
cpp_sources=code,
functions="f",
verbose=True,
)
module = compile("int f() { return 123; }")
self.assertEqual(module.f(), 123)
module = compile("int f() { return 456; }")
self.assertEqual(module.f(), 456)
module = compile("int f() { return 456; }")
self.assertEqual(module.f(), 456)
module = compile("int f() { return 789; }")
self.assertEqual(module.f(), 789)
@dont_wipe_extensions_build_folder
@common.skipIfRocm
def test_cpp_frontend_module_has_same_output_as_python(self, dtype=torch.double):
extension = torch.utils.cpp_extension.load(
name="cpp_frontend_extension",
sources="cpp_extensions/cpp_frontend_extension.cpp",
verbose=True,
)
input = torch.randn(2, 5, dtype=dtype)
cpp_linear = extension.Net(5, 2)
cpp_linear.to(dtype)
python_linear = torch.nn.Linear(5, 2).to(dtype)
# First make sure they have the same parameters
cpp_parameters = dict(cpp_linear.named_parameters())
with torch.no_grad():
python_linear.weight.copy_(cpp_parameters["fc.weight"])
python_linear.bias.copy_(cpp_parameters["fc.bias"])
cpp_output = cpp_linear.forward(input)
python_output = python_linear(input)
self.assertEqual(cpp_output, python_output)
cpp_output.sum().backward()
python_output.sum().backward()
for p in cpp_linear.parameters():
self.assertFalse(p.grad is None)
self.assertEqual(cpp_parameters["fc.weight"].grad, python_linear.weight.grad)
self.assertEqual(cpp_parameters["fc.bias"].grad, python_linear.bias.grad)
@dont_wipe_extensions_build_folder
@common.skipIfRocm
def test_cpp_frontend_module_python_inter_op(self):
extension = torch.utils.cpp_extension.load(
name="cpp_frontend_extension",
sources="cpp_extensions/cpp_frontend_extension.cpp",
verbose=True,
)
# Create a torch.nn.Module which uses the C++ module as a submodule.
class M(torch.nn.Module):
def __init__(self):
super(M, self).__init__()
self.x = torch.nn.Parameter(torch.tensor(1.0))
self.net = extension.Net(3, 5)
def forward(self, input):
return self.net.forward(input) + self.x
net = extension.Net(5, 2)
net.double()
net.to(torch.get_default_dtype())
self.assertEqual(str(net), "Net")
# Further embed the torch.nn.Module into a Sequential, and also add the
# C++ module as an element of the Sequential.
sequential = torch.nn.Sequential(M(), torch.nn.Tanh(), net, torch.nn.Sigmoid())
input = torch.randn(2, 3)
# Try calling the module!
output = sequential.forward(input)
# The call operator is bound to forward too.
self.assertEqual(output, sequential(input))
self.assertEqual(list(output.shape), [2, 2])
# Do changes on the module hierarchy.
old_dtype = torch.get_default_dtype()
sequential.to(torch.float64)
sequential.to(torch.float32)
sequential.to(old_dtype)
self.assertEqual(sequential[2].parameters()[0].dtype, old_dtype)
# Make sure we can access these methods recursively.
self.assertEqual(len(list(sequential.parameters())), len(net.parameters()) * 2 + 1)
self.assertEqual(len(list(sequential.named_parameters())), len(net.named_parameters()) * 2 + 1)
self.assertEqual(len(list(sequential.buffers())), len(net.buffers()) * 2)
self.assertEqual(len(list(sequential.modules())), 8)
# Test clone()
net2 = net.clone()
self.assertEqual(len(net.parameters()), len(net2.parameters()))
self.assertEqual(len(net.buffers()), len(net2.buffers()))
self.assertEqual(len(net.modules()), len(net2.modules()))
# Try differentiating through the whole module.
for parameter in net.parameters():
self.assertIsNone(parameter.grad)
output.sum().backward()
for parameter in net.parameters():
self.assertFalse(parameter.grad is None)
self.assertGreater(parameter.grad.sum(), 0)
# Try calling zero_grad()
net.zero_grad()
for p in net.parameters():
self.assertEqual(p.grad, torch.zeros_like(p))
# Test train(), eval(), training (a property)
self.assertTrue(net.training)
net.eval()
self.assertFalse(net.training)
net.train()
self.assertTrue(net.training)
net.eval()
# Try calling the additional methods we registered.
biased_input = torch.randn(4, 5)
output_before = net.forward(biased_input)
bias = net.get_bias().clone()
self.assertEqual(list(bias.shape), [2])
net.set_bias(bias + 1)
self.assertEqual(net.get_bias(), bias + 1)
output_after = net.forward(biased_input)
self.assertNotEqual(output_before, output_after)
# Try accessing parameters
self.assertEqual(len(net.parameters()), 2)
np = net.named_parameters()
self.assertEqual(len(np), 2)
self.assertIn("fc.weight", np)
self.assertIn("fc.bias", np)
self.assertEqual(len(net.buffers()), 1)
nb = net.named_buffers()
self.assertEqual(len(nb), 1)
self.assertIn("buf", nb)
self.assertEqual(nb[0][1], torch.eye(5))
@dont_wipe_extensions_build_folder
@common.skipIfRocm
def test_cpp_frontend_module_has_up_to_date_attributes(self):
extension = torch.utils.cpp_extension.load(
name="cpp_frontend_extension",
sources="cpp_extensions/cpp_frontend_extension.cpp",
verbose=True,
)
net = extension.Net(5, 2)
self.assertEqual(len(net._parameters), 0)
net.add_new_parameter("foo", torch.eye(5))
self.assertEqual(len(net._parameters), 1)
self.assertEqual(len(net._buffers), 1)
net.add_new_buffer("bar", torch.eye(5))
self.assertEqual(len(net._buffers), 2)
self.assertEqual(len(net._modules), 1)
net.add_new_submodule("fc2")
self.assertEqual(len(net._modules), 2)
@dont_wipe_extensions_build_folder
@unittest.skipIf(not TEST_CUDA, "CUDA not found")
@common.skipIfRocm
def test_cpp_frontend_module_python_inter_op_with_cuda(self):
extension = torch.utils.cpp_extension.load(
name="cpp_frontend_extension",
sources="cpp_extensions/cpp_frontend_extension.cpp",
verbose=True,
)
net = extension.Net(5, 2)
for p in net.parameters():
self.assertTrue(p.device.type == "cpu")
cpu_parameters = [p.clone() for p in net.parameters()]
device = torch.device("cuda", 0)
net.to(device)
for i, p in enumerate(net.parameters()):
self.assertTrue(p.device.type == "cuda")
self.assertTrue(p.device.index == 0)
self.assertEqual(cpu_parameters[i], p)
net.cpu()
net.add_new_parameter("a", torch.eye(5))
net.add_new_parameter("b", torch.eye(5))
net.add_new_buffer("c", torch.eye(5))
net.add_new_buffer("d", torch.eye(5))
net.add_new_submodule("fc2")
net.add_new_submodule("fc3")
for p in net.parameters():
self.assertTrue(p.device.type == "cpu")
net.cuda()
for p in net.parameters():
self.assertTrue(p.device.type == "cuda")
def test_returns_shared_library_path_when_is_python_module_is_true(self):
source = """
#include <torch/script.h>
torch::Tensor func(torch::Tensor x) { return x; }
static torch::RegisterOperators r("test::func", &func);
"""
torch.utils.cpp_extension.load_inline(
name="is_python_module",
cpp_sources=source,
functions="func",
verbose=True,
is_python_module=False,
)
self.assertEqual(torch.ops.test.func(torch.eye(5)), torch.eye(5))
def test_set_default_type_also_changes_aten_default_type(self):
module = torch.utils.cpp_extension.load_inline(
name="test_set_default_type",
cpp_sources="torch::Tensor get() { return torch::empty({}); }",
functions="get",
verbose=True,
)
initial_default = torch.get_default_dtype()
try:
self.assertEqual(module.get().dtype, initial_default)
torch.set_default_dtype(torch.float64)
self.assertEqual(module.get().dtype, torch.float64)
torch.set_default_dtype(torch.float32)
self.assertEqual(module.get().dtype, torch.float32)
torch.set_default_dtype(torch.float16)
self.assertEqual(module.get().dtype, torch.float16)
finally:
torch.set_default_dtype(initial_default)
def test_compilation_error_formatting(self):
# Test that the missing-semicolon error message has linebreaks in it.
# This'll fail if the message has been munged into a single line.
# It's hard to write anything more specific as every compiler has it's own
# error formatting.
with self.assertRaises(RuntimeError) as e:
torch.utils.cpp_extension.load_inline(
name="test_compilation_error_formatting",
cpp_sources="int main() { return 0 }")
pattern = r'.*(\\n|\\r).*'
self.assertNotRegex(str(e), pattern)
def test_warning(self):
# Note: the module created from this source will include the py::key_error
# symbol. But because of visibility and the fact that it lives in a
# different compilation unit than pybind, this trips up ubsan even though
# it is fine. "ubsan.supp" thus needs to contain "vptr:warn_mod.so".
source = '''
// error_type:
// 0: no error
// 1: torch::TypeError
// 2: python_error()
// 3: py::error_already_set
at::Tensor foo(at::Tensor x, int error_type) {
std::ostringstream err_stream;
err_stream << "Error with " << x.type();
TORCH_WARN(err_stream.str());
if(error_type == 1) {
throw torch::TypeError(err_stream.str().c_str());
}
if(error_type == 2) {
PyObject* obj = PyTuple_New(-1);
TORCH_CHECK(!obj);
// Pretend it was caught in a different thread and restored here
auto e = python_error();
e.persist();
e.restore();
throw e;
}
if(error_type == 3) {
throw py::key_error(err_stream.str());
}
return x.cos();
}
'''
# Ensure double type for hard-coded c name below
t = torch.rand(2).double()
cpp_tensor_name = r"CPUDoubleType"
# Without error handling, the warnings cannot be catched
warn_mod = torch.utils.cpp_extension.load_inline(name='warn_mod',
cpp_sources=[source],
functions=['foo'],
with_pytorch_error_handling=False)
with warnings.catch_warnings(record=True) as w:
warn_mod.foo(t, 0)
self.assertEqual(len(w), 0)
with self.assertRaisesRegex(TypeError, t.type()):
warn_mod.foo(t, 1)
self.assertEqual(len(w), 0)
with self.assertRaisesRegex(SystemError, "bad argument to internal function"):
warn_mod.foo(t, 2)
self.assertEqual(len(w), 0)
with self.assertRaisesRegex(KeyError, cpp_tensor_name):
warn_mod.foo(t, 3)
self.assertEqual(len(w), 0)
warn_mod = torch.utils.cpp_extension.load_inline(name='warn_mod',
cpp_sources=[source],
functions=['foo'],
with_pytorch_error_handling=True)
with warnings.catch_warnings(record=True) as w:
# Catched with no error should be detected
warn_mod.foo(t, 0)
self.assertEqual(len(w), 1)
# Catched with cpp error should not be detected
with self.assertRaisesRegex(TypeError, t.type()):
warn_mod.foo(t, 1)
self.assertEqual(len(w), 1)
# Catched with python error should not be detected
with self.assertRaisesRegex(SystemError, "bad argument to internal function"):
warn_mod.foo(t, 2)
self.assertEqual(len(w), 1)
# Catched with pybind error should not be detected
# Note that there is no type name translation for pybind errors
with self.assertRaisesRegex(KeyError, cpp_tensor_name):
warn_mod.foo(t, 3)
self.assertEqual(len(w), 1)
# Make sure raising warnings are handled properly
with warnings.catch_warnings(record=True) as w:
warnings.simplefilter("error")
# No error, the warning should raise
with self.assertRaisesRegex(UserWarning, t.type()):
warn_mod.foo(t, 0)
self.assertEqual(len(w), 0)
# Another error happened, the warning is ignored
with self.assertRaisesRegex(TypeError, t.type()):
warn_mod.foo(t, 1)
self.assertEqual(len(w), 0)
def test_autograd_from_cpp(self):
source = '''
void run_back(at::Tensor x) {
x.backward({});
}
void run_back_no_gil(at::Tensor x) {
pybind11::gil_scoped_release no_gil;
x.backward({});
}
'''
class MyFn(torch.autograd.Function):
@staticmethod
def forward(ctx, x):
return x.clone()
@staticmethod
def backward(ctx, gx):
return gx
test_backward_deadlock = torch.utils.cpp_extension.load_inline(name='test_backward_deadlock',
cpp_sources=[source],
functions=['run_back', 'run_back_no_gil'],)
# This used to deadlock
inp = torch.rand(20, requires_grad=True)
loss = MyFn.apply(inp).sum()
with self.assertRaisesRegex(RuntimeError, "The autograd engine was called while holding the GIL."):
test_backward_deadlock.run_back(loss)
inp = torch.rand(20, requires_grad=True)
loss = MyFn.apply(inp).sum()
test_backward_deadlock.run_back_no_gil(loss)
def test_custom_compound_op_autograd(self):
# Test that a custom compound op (i.e. a custom op that just calls other aten ops)
# correctly returns gradients of those other ops
source = """
#include <torch/library.h>
torch::Tensor my_add(torch::Tensor x, torch::Tensor y) {
return x + y;
}
TORCH_LIBRARY(my, m) {
m.def("add", &my_add);
}
"""
torch.utils.cpp_extension.load_inline(
name="is_python_module",
cpp_sources=source,
verbose=True,
is_python_module=False,
)
a = torch.randn(5, 5, requires_grad=True)
b = torch.randn(5, 5, requires_grad=True)
gradcheck(torch.ops.my.add, [a, b], eps=1e-2)
if __name__ == "__main__":
common.run_tests()