mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-07 12:21:27 +01:00
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/24231 As suggested in https://github.com/pytorch/pytorch/pull/23128#discussion_r309528932, we will add a default weight observer for the dynamic quantization path. We need to move `observer` and `qconfig` to a separate namespace. ghstack-source-id: 88583658 Differential Revision: D16781092 fbshipit-source-id: 5cd59c881a7f98b82704ca318b1e63650d73062a
81 lines
3.6 KiB
Python
81 lines
3.6 KiB
Python
from __future__ import absolute_import, division, print_function, unicode_literals
|
|
import torch
|
|
from ....modules.linear import Linear as NNLinear
|
|
import torch.nn.quantized as nnq
|
|
|
|
from torch._jit_internal import Optional
|
|
|
|
class Linear(nnq.Linear):
|
|
r"""
|
|
A dynamic quantized linear module with quantized tensor as inputs and outputs.
|
|
We adopt the same interface as `torch.nn.Linear`, please see
|
|
https://pytorch.org/docs/stable/nn.html#torch.nn.Linear for documentation.
|
|
|
|
Similar to :class:`torch.nn.Linear`, attributes will be randomly
|
|
initialized at module creation time and will be overwritten later
|
|
|
|
Attributes:
|
|
weight (Tensor): the non-learnable quantized weights of the module which are of
|
|
shape :math:`(\text{out\_features}, \text{in\_features})`.
|
|
bias (Tensor): the non-learnable bias of the module of shape :math:`(\text{out\_features})`.
|
|
If :attr:`bias` is ``True``, the values are initialized to zero.
|
|
scale: `scale` parameter of weight Quantized Tensor, type: double
|
|
zero_point: `zero_point` parameter for weight Quantized Tensor, type: long
|
|
|
|
Examples::
|
|
|
|
>>> m = nn.quantized.dynamic.Linear(20, 30)
|
|
>>> input = torch.randn(128, 20)
|
|
>>> output = m(input)
|
|
>>> print(output.size())
|
|
torch.Size([128, 30])
|
|
"""
|
|
|
|
__annotations__ = {'bias' : Optional[torch.Tensor]}
|
|
|
|
def __init__(self, in_features, out_features, bias_=True):
|
|
super(Linear, self).__init__(in_features, out_features, bias_)
|
|
# We don't muck around with buffers or attributes or anything here
|
|
# to keep the module simple. *everything* is simply a Python attribute.
|
|
# Serialization logic is explicitly handled in the below serialization and
|
|
# deserialization modules
|
|
if bias_:
|
|
del self.bias
|
|
self.bias = torch.Tensor(out_features).float()
|
|
else:
|
|
self.bias = None
|
|
|
|
def forward(self, x):
|
|
# Note that we can handle self.bias == None case.
|
|
Y = torch.ops.quantized.fbgemm_linear_dynamic(
|
|
x, self._packed_weight,
|
|
self.bias)
|
|
return Y.to(x.dtype)
|
|
|
|
@classmethod
|
|
def from_float(cls, mod):
|
|
r"""Create a dynamic quantized module from a float module or qparams_dict
|
|
|
|
Args:
|
|
mod (Module): a float module, either produced by torch.quantization
|
|
utilities or provided by the user
|
|
"""
|
|
assert type(mod) == NNLinear, 'nn.quantized.dynamic.Linear.from_float only works for nn.Linear'
|
|
assert hasattr(mod, 'qconfig'), 'Input float module must have qconfig defined'
|
|
if mod.qconfig is not None and mod.qconfig.weight() is not None:
|
|
weight_observer = mod.qconfig.weight()
|
|
else:
|
|
# We have the circular import issues if we import the qconfig in the beginning of this file:
|
|
# https://github.com/pytorch/pytorch/pull/24231. The current workaround is to postpone the
|
|
# import until we need it.
|
|
from torch.quantization.QConfig import default_dynamic_qconfig
|
|
weight_observer = default_dynamic_qconfig.weight()
|
|
assert weight_observer.dtype == torch.qint8, 'Weight observer must have dtype torch.qint8'
|
|
weight_observer(mod.weight)
|
|
wt_scale, wt_zp = weight_observer.calculate_qparams()
|
|
qweight = torch.quantize_linear(mod.weight.float(), float(wt_scale), int(wt_zp), torch.qint8)
|
|
qlinear = Linear(mod.in_features, mod.out_features)
|
|
qlinear.set_weight(qweight)
|
|
qlinear.bias = mod.bias
|
|
return qlinear
|