pytorch/torch/_dynamo/variables/torch.py
Michael Voznesensky 6c8ef6a4c2 Add tracing context, Integrate dynamo guards into torch._guards (#90647)
As defined here: https://docs.google.com/document/d/1oniZEgAaHE1IMByPRWRKbUHeaW06E2HMfCTCQyMRLek/edit#

This PR creates a new structure, a TracingContext, whose lifecycle matches that of the traced frame. It carries on it a GuardsContext, and eventually, a FakeTensorMode. It is the source of truth of all accumulated guards.

In this PR, we create the structure, and integrate it into dynamo. We do so by mapping OutputGraph's guards structure to its guard structure.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/90647
Approved by: https://github.com/ezyang
2022-12-14 07:35:32 +00:00

828 lines
30 KiB
Python

import logging
import math
import re
import types
from collections import OrderedDict
from typing import Dict, List
import numpy
import torch._C
import torch.fx
import torch.nn
import torch.onnx.operators
from torch._guards import GuardsCheckpointState
from .. import config, variables
from ..allowed_functions import torch_get_name
from ..exc import unimplemented
from ..source import GetItemSource, NNModuleSource
from ..utils import (
check_constant_args,
check_unspec_python_args,
istype,
product,
proxy_args_kwargs,
specialize_args_kwargs,
tensortype_to_dtype,
)
from .base import VariableTracker
from .lists import ListVariable, TupleVariable
from .misc import AutocastModeVariable, NullContextVariable
from .tensor import TensorWithTFOverrideVariable
log = logging.getLogger(__name__)
# TODO(voz): Maybe rename these later
tensor_dunder_fns = [
torch.Tensor.__rmatmul__,
torch.Tensor.__rmod__,
torch.Tensor.__rpow__,
torch.Tensor.__rsub__,
torch._C._TensorBase.__radd__,
torch._C._TensorBase.__rmul__,
torch._C._TensorBase.__ror__,
torch._C._TensorBase.__rxor__,
torch._C._TensorBase.__rand__,
]
torch_special_class_types = (torch._C.Generator,)
REWRITE_OPS_TO_TENSOR_SIZE_METHOD = [
torch.onnx.operators.shape_as_tensor,
torch._shape_as_tensor,
]
constant_fold_functions = [
torch._assert,
torch._utils._get_device_index,
torch.cuda.is_available,
torch.device,
torch.distributed.is_available,
torch.finfo,
torch.iinfo,
torch.is_floating_point,
torch.nn.functional._Reduction.get_enum,
]
if torch.distributed.is_available():
constant_fold_functions.append(torch.distributed.is_initialized)
# TODO(voz): perhaps a decorator? This is rather readable for now tho, and not a public API.
def remap_as_fn___radd__(*args):
return torch._C._TensorBase.__radd__(*args)
def remap_as_fn___rmul__(*args):
return torch._C._TensorBase.__rmul__(*args)
def remap_as_fn___ror__(*args):
return torch._C._TensorBase.__ror__(*args)
def remap_as_fn___rxor__(*args):
return torch._C._TensorBase.__rxor__(*args)
def remap_as_fn___rand__(*args):
return torch._C._TensorBase.__rand__(*args)
tensor_dunder_fns_remap = {
torch._C._TensorBase.__radd__: remap_as_fn___radd__,
torch._C._TensorBase.__rmul__: remap_as_fn___rmul__,
torch._C._TensorBase.__ror__: remap_as_fn___ror__,
torch._C._TensorBase.__rxor__: remap_as_fn___rxor__,
torch._C._TensorBase.__rand__: remap_as_fn___rand__,
}
try:
# Wed need to monkeypatch transformers here, sadly.
# TODO(voz): Upstream to transformers lib
import transformers
def _dynamo_overriden_transformers_eq(self, other):
if not hasattr(other, "__dict__"):
return False
return self.__dict__ == other.__dict__
transformers.configuration_utils.PretrainedConfig.__eq__ = (
_dynamo_overriden_transformers_eq
)
except ImportError:
pass
class TorchVariable(VariableTracker):
"""Points to a module or method in torch.*"""
def __init__(self, value, **kwargs):
super(TorchVariable, self).__init__(**kwargs)
if value in tensor_dunder_fns_remap:
value = tensor_dunder_fns_remap[value]
self.value = value
# the remainder of this is just optional debug checks
try:
self_should_be_none = getattr(self.value, "__self__", None)
except RuntimeError as e:
assert "No such operator" in str(e), str(e)
self_should_be_none = None
# assert "_ntuple.<locals>.parse" not in str(value)
if self_should_be_none is None:
pass
elif isinstance(self_should_be_none, types.ModuleType):
# weird ones like torch.nn.functional.avg_pool2d have __self__
name = self_should_be_none.__name__
assert re.match(r"^(torch|math)([.]|$)", name), f"__self__ set to {name}"
elif isinstance(
self_should_be_none, type(torch._C._get_tracing_state.__self__)
):
# some _C functions have __self__ as a null capsule
pass
elif isinstance(self_should_be_none, torch_special_class_types):
pass
else:
raise AssertionError(f"{value} found with __self__ set")
def __repr__(self):
return f"TorchVariable({self.value})"
def unique_var_name(self):
name = torch_get_name(self.value, f"allowed_fn_{id(self.value)}")
return "__" + re.sub(r"[^a-zA-Z0-9_]+", "_", name)
def reconstruct(self, codegen):
return codegen.setup_globally_cached(self.unique_var_name(), self.value)
def as_proxy(self):
return self.value
def python_type(self):
if isinstance(self.value, (torch.Tensor, torch.nn.Module)):
return type(self.value)
return super().python_type()
def as_python_constant(self):
return self.value
def can_constant_fold_through(self):
if self.value in constant_fold_functions:
return True
return getattr(self.value, "__module__", None) == "math"
def call_function(
self, tx, args: "List[VariableTracker]", kwargs: "Dict[str, VariableTracker]"
) -> "VariableTracker":
from . import (
ConstantVariable,
DynamicShapeVariable,
GradModeVariable,
TensorVariable,
UserDefinedObjectVariable,
)
from .builder import wrap_fx_proxy
constant_args = check_constant_args(args, kwargs)
unspec_python_args = check_unspec_python_args(args, kwargs)
options = VariableTracker.propagate(self, args, kwargs.values())
if self.value in config.constant_functions:
assert not args and not kwargs
return ConstantVariable(config.constant_functions[self.value], **options)
elif self.can_constant_fold_through() and (constant_args or unspec_python_args):
args, kwargs = specialize_args_kwargs(tx, args, kwargs)
# constant fold
return ConstantVariable(
self.as_python_constant()(
*[x.as_python_constant() for x in args],
**{k: v.as_python_constant() for k, v in kwargs.items()},
),
**options,
)
elif istype(self.value, type) and issubclass(self.value, torch.nn.Module):
if self.value is torch.nn.Softmax:
return self._call_softmax(tx, args, kwargs, options)
if self.value is torch.nn.CrossEntropyLoss:
return self._call_cross_entropy_loss(tx, args, kwargs, options)
else:
unimplemented(f"construct nn.Module: {self.value.__name__}")
elif self.value in (torch.is_tensor, torch.overrides.is_tensor_like):
assert len(args) == 1
if isinstance(args[0], TensorVariable) or (
self.value is torch.overrides.is_tensor_like
and isinstance(args[0], UserDefinedObjectVariable)
and hasattr(args[0].value, "__torch_function__")
):
return ConstantVariable(True, **options)
else:
return ConstantVariable(False, **options)
elif (
self.value
in (
torch.is_floating_point,
torch.is_complex,
)
and isinstance(args[0], TensorVariable)
and args[0].dtype is not None
):
if self.value is torch.is_floating_point:
return ConstantVariable(args[0].dtype.is_floating_point, **options)
elif self.value is torch.is_complex:
return ConstantVariable(args[0].dtype.is_complex, **options)
else:
raise AssertionError()
elif (
self.value is torch.numel
and isinstance(args[0], TensorVariable)
and args[0].size is not None
):
return ConstantVariable(product(args[0].size), **options)
elif self.value in REWRITE_OPS_TO_TENSOR_SIZE_METHOD:
assert len(args) == 1
assert isinstance(args[0], TensorVariable)
return args[0].call_method(tx, "size", [], {})
elif self.value in (
torch.nn.modules.utils._single,
torch.nn.modules.utils._pair,
torch.nn.modules.utils._triple,
torch.nn.modules.utils._quadruple,
torch.nn.modules.utils._ntuple,
):
return self._call_ntuple(tx, args, kwargs, options)
elif self.value is torch.no_grad:
return GradModeVariable.create(tx, False, **options)
elif self.value is torch.enable_grad:
return GradModeVariable.create(tx, True, **options)
elif self.value is torch.set_grad_enabled and len(args) == 1:
return GradModeVariable.create(tx, args[0].as_python_constant(), **options)
elif self.value is torch.is_grad_enabled:
assert not (args or kwargs)
return ConstantVariable(torch.is_grad_enabled(), **options).add_guards(
GradModeVariable._guards_singleton
)
elif not config.dynamic_shapes and self.is_dynamic_shapes(args, kwargs):
unimplemented(f"dynamic shapes: {self.value.__name__}")
elif len(args) > 0 and isinstance(args[0], TensorWithTFOverrideVariable):
# This code block implements inlining the __torch_function__
# override of a tensor.
tensor_with_tf_override = args[0]
# TODO(future PR): make this implement the full __torch_function__ API
# instead of assuming the relevant override is in the first argument.
args[0] = args[0].tensor_variable
unwrapped = TensorWithTFOverrideVariable.inline_torch_function_unwrapped(
tx,
self,
tensor_with_tf_override.orig_tensor_variable_source,
tensor_with_tf_override.subclass_torch_function__func,
tensor_with_tf_override.subclass_type,
options,
args,
kwargs,
)
# The wrapping here follows the logic in
# `torch.Tensor.__torch_function__`.
if self.value in torch.overrides.get_default_nowrap_functions():
return unwrapped
return TensorWithTFOverrideVariable(
unwrapped,
tensor_with_tf_override.orig_tensor_variable_source,
tensor_with_tf_override.subclass_torch_function__func,
tensor_with_tf_override.subclass_type,
)
elif self.value is torch.amp.autocast_mode.autocast:
return AutocastModeVariable.create(target_values=args, kwargs=kwargs)
elif self.value in (
torch.profiler.profile,
torch.profiler.record_function,
torch.autograd.profiler.profile,
torch.autograd.profiler.record_function,
):
log.warning("Profiler will be ignored")
return NullContextVariable(**options)
elif self.value is torch.autograd._profiler_enabled:
unimplemented("torch.autograd._profiler_enabled not supported yet")
elif self.value is torch.jit.annotate:
assert len(args) == 2
return args[1]
if (
self.value.__name__ == "get_state"
and hasattr(self.value, "__self__")
and isinstance(self.value.__self__, torch._C.Generator)
):
def get_state_from_generator():
return self.value()
return wrap_fx_proxy(
tx=tx,
proxy=tx.output.create_proxy(
"call_function",
get_state_from_generator,
*proxy_args_kwargs(args, kwargs),
),
example_value=self.value(),
**options,
)
if (
self.value.__name__ == "set_state"
and hasattr(self.value, "__self__")
and isinstance(self.value.__self__, torch._C.Generator)
) or self.value == torch.random.set_rng_state:
assert len(args) == 1
assert isinstance(args[0], TensorVariable)
unimplemented(
"TODO: make torch.random.set_rng_state work with FakeTensor/aot_autograd"
)
# In fake tensor case, this state doesn't matter, but
# it needs to be valid to not segfault. Pull a real tensor out.
# The value won't matter since we are running with fake tensors anyway, so rng doesn't matter.
# However, it is imperative to record the call_function in the graph with the true args
# (Not the fake example_value) - for the sake of graph correctness.
if self.value == torch.random.set_rng_state:
example_value = torch.random.get_rng_state()
else:
example_value = self.value.__self__.get_state()
self.value.__module__ = self.__module__
return wrap_fx_proxy(
tx=tx,
proxy=tx.output.create_proxy(
"call_function",
self.value,
*proxy_args_kwargs(args, kwargs),
),
example_value=example_value,
**options,
)
elif (
self.value == torch.numel
and len(args) == 1
and isinstance(args[0], TensorVariable)
and len(kwargs) == 0
):
# TODO(voz): This is rewritten as a call_method because
# torch.numel(x) w/ sym shapes raises a RuntimeError and x.numel() does not
return wrap_fx_proxy(
tx=tx,
proxy=tx.output.create_proxy(
"call_method",
"numel",
*proxy_args_kwargs(args, kwargs),
),
**options,
)
elif (
self.value == torch.addcdiv
and len(args) == 3
and "value" in kwargs
and len(kwargs) == 1
):
# decompose addcdiv into constituent ops, prevents a graph break due to converting
# value to a scalar
result = TorchVariable(torch.div, **options).call_function(tx, args[1:], {})
result = TorchVariable(torch.mul, **options).call_function(
tx, [result, kwargs["value"]], {}
)
return TorchVariable(torch.add, **options).call_function(
tx, [args[0], result], {}
)
else:
any_symints_or_symfloats = any(
[isinstance(x, DynamicShapeVariable) for x in args]
)
all_ints_or_floats = all(
[
isinstance(
x, (variables.ConstantVariable, variables.DynamicShapeVariable)
)
for x in args
]
)
bin_ops = set(["add", "sub", "mul", "div", "sqrt"])
if (
self.value.__module__ == "torch"
and self.value.__name__ in bin_ops
and any_symints_or_symfloats
and all_ints_or_floats
):
msg = f"""\
Calling {str(self.value)} on only torch.SymInt arguments is not yet supported.
To support this behavior, we need to allow const-propping tensors that store symint data.
For now, dynamo will explicitly graph break when it encounters user code with this behavior.
"""
log.warning(msg)
raise unimplemented(msg)
# Handle sth like torch.LongTensor(list(np.int64, np.int64, ...)),
# as FX symbolic trace doesn't support numpy int/float as base types.
if (
self.value in tensortype_to_dtype
and len(args) == 1
and isinstance(args[0], ListVariable)
and args[0].is_python_constant()
):
for x in args[0].items:
if isinstance(x.value, numpy.generic):
x.value = x.value.item()
# TODO(voz): Replace w/ dynamic shape rewrite table.
# Ideally, we would be able to do this at ctor time, but alas we need a combination
# of value + args to determine this.
fn_ = self.value
if any([isinstance(x, DynamicShapeVariable) for x in args]):
if self.value == math.sqrt:
from torch.fx.experimental.symbolic_shapes import sym_sqrt
fn_ = sym_sqrt
tensor_variable = wrap_fx_proxy(
tx=tx,
proxy=tx.output.create_proxy(
"call_function",
fn_,
*proxy_args_kwargs(args, kwargs),
),
**options,
)
if "out" in kwargs:
# out variants of torch operators like torch.sort and
# torch.sigmoid mutate the tensors in the out field. Track such
# tensors and rewrite the symbolic locals.
if isinstance(tensor_variable, TupleVariable):
assert isinstance(kwargs["out"], TupleVariable)
output_tensor_names = [
tx.find_symbolic_locals_name(x) for x in kwargs["out"].items
]
for idx, name in enumerate(output_tensor_names):
assert name in tx.symbolic_locals
tx.symbolic_locals[name] = tensor_variable.items[idx]
elif isinstance(tensor_variable, TensorVariable):
assert isinstance(kwargs["out"], TensorVariable)
name = tx.find_symbolic_locals_name(kwargs["out"])
assert name in tx.symbolic_locals
tx.symbolic_locals[name] = tensor_variable
else:
unimplemented(f"out variant of {type(kwargs['out'])}")
return tensor_variable
def is_dynamic_shapes(self, args, kwargs):
"""Check for dynamic shapes when shape specialization is enabled"""
# TODO(jansel): need to get a complete list
if self.value in (
torch.nonzero,
torch.unique,
torch.unique_consecutive,
) or self.value.__name__ in ("nms",):
return True
if self.value is torch.where and len(args) + len(kwargs) == 1:
return True
if self.value in (
torch.arange,
torch.repeat_interleave,
):
none = variables.ConstantVariable(None)
def has_non_const(it):
return not all(x.is_python_constant() for x in it)
def arange(start=none, end=none, step=none, **kwargs):
return has_non_const([start, end, step])
def repeat_interleave(input, repeats, dim=none, **kwargs):
return has_non_const([repeats])
return locals()[self.value.__name__](*args, **kwargs)
return False
def _call_softmax(self, tx, args, kwargs, options):
"""rewrite the pattern nn.Softmax(dim=-1)(x) to F.softmax(x, -1)"""
dim = args[0] if args else kwargs.get("dim", variables.ConstantVariable(None))
def fake_softmax(input):
from .builder import wrap_fx_proxy
return wrap_fx_proxy(
tx=tx,
proxy=tx.output.create_proxy(
"call_function",
torch.nn.functional.softmax,
*proxy_args_kwargs([input, dim], {}),
),
**VariableTracker.propagate([self, dim, input]),
)
return variables.LambdaVariable(fake_softmax, **options)
def _call_cross_entropy_loss(self, tx, args, kwargs, options):
"""
functional: input, target, weight=None, size_average=None, ignore_index=- 100, reduce=None, reduction='mean',
label_smoothing=0.0
non functional ctor: weight=None, size_average=None, ignore_index=- 100, reduce=None, reduction='mean',
label_smoothing=0.0
non functional loss call: input, target, optional_output
"""
from . import ConstantVariable
def normalize_args(
weight=ConstantVariable(None),
size_average=ConstantVariable(None),
ignore_index=ConstantVariable(-100),
reduce=ConstantVariable(None),
reduction=ConstantVariable("mean"),
label_smoothing=ConstantVariable(0.0),
):
return (
weight,
size_average,
ignore_index,
reduce,
reduction,
label_smoothing,
)
(
weight,
size_average,
ignore_index,
reduce_arg,
reduction,
label_smoothing,
) = normalize_args(*args, **kwargs)
def fake_cross_entropy_loss(input, target):
from .builder import wrap_fx_proxy
return wrap_fx_proxy(
tx=tx,
proxy=tx.output.create_proxy(
"call_function",
torch.nn.functional.cross_entropy,
*proxy_args_kwargs(
[
input,
target,
weight,
size_average,
ignore_index,
reduce_arg,
reduction,
label_smoothing,
],
{},
),
),
**VariableTracker.propagate(
[
self,
weight,
size_average,
ignore_index,
reduce_arg,
reduction,
label_smoothing,
input,
target,
]
),
)
return variables.LambdaVariable(fake_cross_entropy_loss, **options)
def _call_ntuple(self, tx, args, kwargs, options):
"""inline behavior of torch.nn.modules.utils._ntuple"""
if self.value is torch.nn.modules.utils._ntuple:
count = args[0].as_python_constant()
else:
count = self.value.__closure__[0].cell_contents
assert isinstance(count, int)
def handle_ntuple(value):
if value.has_unpack_var_sequence(tx):
return variables.TupleVariable(
list(value.unpack_var_sequence(tx)),
**VariableTracker.propagate(self, value, args, kwargs.values()),
)
elif value.is_python_constant():
# constant prop through it
return variables.ConstantVariable(
torch.nn.modules.utils._ntuple(count)(value.as_python_constant()),
**VariableTracker.propagate(self, value, args, kwargs.values()),
)
else:
unimplemented(f"torch.nn.modules.utils._ntuple({value})")
if self.value is torch.nn.modules.utils._ntuple:
return variables.LambdaVariable(handle_ntuple, **options)
else:
return handle_ntuple(args[0])
class TorchPyOperator(VariableTracker):
def __init__(self, value, **kwargs):
super(TorchPyOperator, self).__init__(**kwargs)
self.value = value
def call_function(
self, tx, args: "List[VariableTracker]", kwargs: "Dict[str, VariableTracker]"
) -> "VariableTracker":
from . import (
ListVariable,
NestedUserFunctionVariable,
TensorVariable,
UserFunctionVariable,
)
from .builder import wrap_fx_proxy
assert kwargs is None or len(kwargs) == 0, "kwargs are not supported, yet"
def make_attr(name):
node = tx.output.create_proxy(
"get_attr",
name,
(),
{},
)
return node
def add_subgraph(name, gm):
next_name = None
i = 0
while not next_name:
candidate = f"cond_{name}_{i}"
if candidate in tx.output.nn_modules:
i += 1
else:
next_name = candidate
gm.__name__ = next_name
src = NNModuleSource(GetItemSource(self.source, next_name))
gm.torchdynamo_force_dynamic = False
tx.output.register_attr_or_module(gm, next_name, source=src)
return next_name
if self.value.__name__ == "cond":
# TODO(voz): Support fake tensor dispatch for recursive
# ops - see torch/dispatch/_dispatcher.py
assert len(args) == 4
assert type(args[0]) is TensorVariable, str(type(args[0])) # predicate
assert isinstance(
args[1], (UserFunctionVariable, NestedUserFunctionVariable)
), str(
type(args[1])
) # true_fn
assert isinstance(
args[2], (UserFunctionVariable, NestedUserFunctionVariable)
), str(
type(args[2])
) # false_fn
assert type(args[3]) is ListVariable, str(type(args[3])) # args
# Our strategy for tracing the true/false branches of cond
# are to checkpoint our graphstate, run the true branch,
# roll it back to the checkpoint, and run the false
# branch, and then merge the graphstates. Well, perhaps
# "merge" is too strong a word: we mostly assert that
# the resulting graphstates have to be the same.
#
# We only permit guards to diverge (we union the guards from
# both branches). In particular, this means that side
# effects are NOT permitted inside true/false branches; this
# would be difficult to implement, because of the path
# explosion problem.
graph_checkpoint, checkpoint = tx.output.graph, tx.copy_graphstate()
sub_args = args[3].unpack_var_sequence(tx)
def speculate_branch(branch):
# Setup the subgraph we're going to capture into
tx.output.graph = torch.fx.Graph()
tx.output.graphargs = []
tx.output.name_to_input.clear()
# One argument to graph per sub_args
for a in sub_args:
assert isinstance(a, TensorVariable)
tx.output.create_graph_input(a.as_proxy().node.name)
# NB: we don't bother populating graphargs, as
# they won't actually get used by anything
# NB: 0 is predicate
ix = 1 if branch else 2
output = args[ix].call_function(tx, sub_args, {})
# Register output to graph
# Modeled off of compile_and_call_fx_graph
# TODO: support non single Tensor output
assert isinstance(output, TensorVariable)
tx.output.guards.update(output.guards)
tx.output.create_node(
"output", "output", (tx.output.create_arg((output.as_proxy(),))), {}
)
tx.output.side_effects.prune_dead_object_new(tx)
state = tx.copy_graphstate()
guards = state.output.guards
nn_modules = state.output.nn_modules
# Nub out bits of state that we don't require to be
# equal
comparable_state = state._replace(
output=state.output._replace(
guard_state=GuardsCheckpointState(set()),
nn_modules=None,
# Timestamp is monotonically increasing so we don't
# care about divergence
timestamp=0,
# Meh (problem is the nodes don't compare equal;
# maybe nub out outputs only)
name_to_input=OrderedDict(),
)
)
graph = tx.output.graph
tx.output.graph = graph_checkpoint
tx.restore_graphstate(checkpoint)
return output, graph, guards, nn_modules, comparable_state
(
true_r,
true_graph,
true_guards,
true_nn_modules,
true_cmp,
) = speculate_branch(True)
(
false_r,
false_graph,
false_guards,
false_nn_modules,
false_cmp,
) = speculate_branch(False)
if true_cmp != false_cmp:
unimplemented(true_cmp.diff(false_cmp))
# Add guards
tx.output.tracing_context.guards_context.dynamo_guards |= false_guards
tx.output.tracing_context.guards_context.dynamo_guards |= true_guards
true_name = add_subgraph(
"true", torch.fx.GraphModule(true_nn_modules, true_graph)
)
false_name = add_subgraph(
"false", torch.fx.GraphModule(false_nn_modules, false_graph)
)
# Apply side effects (guaranteed to be equal)
tx.output.side_effects = true_cmp.output.side_effects
true_node = make_attr(true_name)
false_node = make_attr(false_name)
p_args = (
args[0].as_proxy(),
true_node,
false_node,
tuple(a.as_proxy() for a in sub_args),
)
# TODO: assert that the true/false return values are
# consistent
example_value = true_r.as_proxy().node.meta["example_value"]
else:
unimplemented(f"PyOperator {self.value.__name__}")
# Store the invocation as a call
return wrap_fx_proxy(
tx=tx,
proxy=tx.output.create_proxy(
"call_function",
self.value,
args=tuple(p_args),
kwargs={},
),
example_value=example_value,
)