mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-06 12:20:52 +01:00
Fixes #144196 Extends #144106 and #144110 ## Open Problems: - [ ] Annotating with `numbers.Number` is a bad idea, should consider using `float`, `SupportsFloat` or some `Procotol`. https://github.com/pytorch/pytorch/pull/144197#discussion_r1903324769 # Notes - `beta.py`: needed to add `type: ignore` since `broadcast_all` is untyped. - `categorical.py`: converted `else` branches of mutually exclusive arguments to `if` branch[^2]. - ~~`dirichlet.py`: replaced `axis` with `dim` arguments.~~ #144402 - `gemoetric.py`: converted `else` branches of mutually exclusive arguments to `if` branch[^2]. - ~~`independent.py`: fixed bug in `Independent.__init__` where `tuple[int, ...]` could be passed to `Distribution.__init__` instead of `torch.Size`.~~ **EDIT:** turns out the bug is related to typing of `torch.Size`. #144218 - `independent.py`: made `Independent` a generic class of its base distribution. - `multivariate_normal.py`: converted `else` branches of mutually exclusive arguments to `if` branch[^2]. - `relaxed_bernoulli.py`: added class-level type hint for `base_dist`. - `relaxed_categorical.py`: added class-level type hint for `base_dist`. - ~~`transforms.py`: Added missing argument to docstring of `ReshapeTransform`~~ #144401 - ~~`transforms.py`: Fixed bug in `AffineTransform.sign` (could return `Tensor` instead of `int`).~~ #144400 - `transforms.py`: Added `type: ignore` comments to `AffineTransform.log_abs_det_jacobian`[^1]; replaced `torch.abs(scale)` with `scale.abs()`. - `transforms.py`: Added `type: ignore` comments to `AffineTransform.__eq__`[^1]. - `transforms.py`: Fixed type hint on `CumulativeDistributionTransform.domain`. Note that this is still an LSP violation, because `Transform.domain` is defined as `Constraint`, but `Distribution.domain` is defined as `Optional[Constraint]`. - skipped: `constraints.py`, `constraints_registry.py`, `kl.py`, `utils.py`, `exp_family.py`, `__init__.py`. ## Remark `TransformedDistribution`: `__init__` uses the check `if reinterpreted_batch_ndims > 0:`, which can lead to the creation of `Independent` distributions with only 1 component. This results in awkward code like `base_dist.base_dist` in `LogisticNormal`. ```python import torch from torch.distributions import * b1 = Normal(torch.tensor([0.0]), torch.tensor([1.0])) b2 = MultivariateNormal(torch.tensor([0.0]), torch.eye(1)) t = StickBreakingTransform() d1 = TransformedDistribution(b1, t) d2 = TransformedDistribution(b2, t) print(d1.base_dist) # Independent with 1 dimension print(d2.base_dist) # MultivariateNormal ``` One could consider changing this to `if reinterpreted_batch_ndims > 1:`. [^1]: Usage of `isinstance(value, numbers.Real)` leads to problems with static typing, as the `numbers` module is not supported by `mypy` (see <https://github.com/python/mypy/issues/3186>). This results in us having to add type-ignore comments in several places [^2]: Otherwise, we would have to add a bunch of `type: ignore` comments to make `mypy` happy, as it isn't able to perform the type narrowing. Ideally, such code should be replaced with structural pattern matching once support for Python 3.9 is dropped. Pull Request resolved: https://github.com/pytorch/pytorch/pull/144197 Approved by: https://github.com/malfet Co-authored-by: Aaron Gokaslan <aaronGokaslan@gmail.com>
122 lines
3.8 KiB
Python
122 lines
3.8 KiB
Python
# mypy: allow-untyped-defs
|
|
import math
|
|
from typing import Optional, Union
|
|
|
|
import torch
|
|
from torch import Tensor
|
|
from torch.distributions import constraints
|
|
from torch.distributions.exp_family import ExponentialFamily
|
|
from torch.distributions.utils import _standard_normal, broadcast_all
|
|
from torch.types import _Number, _size
|
|
|
|
|
|
__all__ = ["Normal"]
|
|
|
|
|
|
class Normal(ExponentialFamily):
|
|
r"""
|
|
Creates a normal (also called Gaussian) distribution parameterized by
|
|
:attr:`loc` and :attr:`scale`.
|
|
|
|
Example::
|
|
|
|
>>> # xdoctest: +IGNORE_WANT("non-deterministic")
|
|
>>> m = Normal(torch.tensor([0.0]), torch.tensor([1.0]))
|
|
>>> m.sample() # normally distributed with loc=0 and scale=1
|
|
tensor([ 0.1046])
|
|
|
|
Args:
|
|
loc (float or Tensor): mean of the distribution (often referred to as mu)
|
|
scale (float or Tensor): standard deviation of the distribution
|
|
(often referred to as sigma)
|
|
"""
|
|
|
|
arg_constraints = {"loc": constraints.real, "scale": constraints.positive}
|
|
support = constraints.real
|
|
has_rsample = True
|
|
_mean_carrier_measure = 0
|
|
|
|
@property
|
|
def mean(self) -> Tensor:
|
|
return self.loc
|
|
|
|
@property
|
|
def mode(self) -> Tensor:
|
|
return self.loc
|
|
|
|
@property
|
|
def stddev(self) -> Tensor:
|
|
return self.scale
|
|
|
|
@property
|
|
def variance(self) -> Tensor:
|
|
return self.stddev.pow(2)
|
|
|
|
def __init__(
|
|
self,
|
|
loc: Union[Tensor, float],
|
|
scale: Union[Tensor, float],
|
|
validate_args: Optional[bool] = None,
|
|
) -> None:
|
|
self.loc, self.scale = broadcast_all(loc, scale)
|
|
if isinstance(loc, _Number) and isinstance(scale, _Number):
|
|
batch_shape = torch.Size()
|
|
else:
|
|
batch_shape = self.loc.size()
|
|
super().__init__(batch_shape, validate_args=validate_args)
|
|
|
|
def expand(self, batch_shape, _instance=None):
|
|
new = self._get_checked_instance(Normal, _instance)
|
|
batch_shape = torch.Size(batch_shape)
|
|
new.loc = self.loc.expand(batch_shape)
|
|
new.scale = self.scale.expand(batch_shape)
|
|
super(Normal, new).__init__(batch_shape, validate_args=False)
|
|
new._validate_args = self._validate_args
|
|
return new
|
|
|
|
def sample(self, sample_shape=torch.Size()):
|
|
shape = self._extended_shape(sample_shape)
|
|
with torch.no_grad():
|
|
return torch.normal(self.loc.expand(shape), self.scale.expand(shape))
|
|
|
|
def rsample(self, sample_shape: _size = torch.Size()) -> Tensor:
|
|
shape = self._extended_shape(sample_shape)
|
|
eps = _standard_normal(shape, dtype=self.loc.dtype, device=self.loc.device)
|
|
return self.loc + eps * self.scale
|
|
|
|
def log_prob(self, value):
|
|
if self._validate_args:
|
|
self._validate_sample(value)
|
|
# compute the variance
|
|
var = self.scale**2
|
|
log_scale = (
|
|
math.log(self.scale)
|
|
if isinstance(self.scale, _Number)
|
|
else self.scale.log()
|
|
)
|
|
return (
|
|
-((value - self.loc) ** 2) / (2 * var)
|
|
- log_scale
|
|
- math.log(math.sqrt(2 * math.pi))
|
|
)
|
|
|
|
def cdf(self, value):
|
|
if self._validate_args:
|
|
self._validate_sample(value)
|
|
return 0.5 * (
|
|
1 + torch.erf((value - self.loc) * self.scale.reciprocal() / math.sqrt(2))
|
|
)
|
|
|
|
def icdf(self, value):
|
|
return self.loc + self.scale * torch.erfinv(2 * value - 1) * math.sqrt(2)
|
|
|
|
def entropy(self):
|
|
return 0.5 + 0.5 * math.log(2 * math.pi) + torch.log(self.scale)
|
|
|
|
@property
|
|
def _natural_params(self) -> tuple[Tensor, Tensor]:
|
|
return (self.loc / self.scale.pow(2), -0.5 * self.scale.pow(2).reciprocal())
|
|
|
|
def _log_normalizer(self, x, y):
|
|
return -0.25 * x.pow(2) / y + 0.5 * torch.log(-math.pi / y)
|