pytorch/caffe2/python/modeling/parameter_info.py
Alexander Sidorov 016f72537a ModelHelper.create_param, Initializer abstraction and ParameterInfo for optimizers
Summary:
This is going to unblock Nvidia in their work on adding fp16
support to Caffe2. I discussed this with kennyhorror before to make
sure this fits into his work on parameter sharing.

Reviewed By: kennyhorror

Differential Revision: D5127797

fbshipit-source-id: 4db155d320b1862570c23b77c4252bdacbf2296f
2017-05-25 22:03:15 -07:00

49 lines
1.5 KiB
Python

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
from caffe2.python import core
import numpy as np
class ParameterType(object):
DENSE = 'dense'
SPARSE = 'sparse'
class ParameterInfo(object):
def __init__(
self, param_id, param, key=None, shape=None, length=None,
grad=None):
assert isinstance(param, core.BlobReference)
self.param_id = param_id
self.name = str(param)
self.blob = param
self.key = key
self.shape = shape
self.size = None if shape is None else np.prod(shape)
self.length = max(1, length if length is not None else 1)
self.grad = grad
self._cloned_init_net = None
def grad_type(self):
# self.grad could be None for model parallelism with parameter server
if self.grad is None:
return
return (
ParameterType.SPARSE if isinstance(self.grad, core.GradientSlice)
else ParameterType.DENSE)
def cloned_init_net(self):
if not self._cloned_init_net:
init_net, outputs = self.blob.Net().ClonePartial(
'param_%d_%s_init' % (self.param_id, self.name),
inputs=[],
outputs=[self.blob])
self._cloned_init_net = (init_net, outputs[0])
return self._cloned_init_net
def __str__(self):
return self.name