pytorch/caffe2/python/modeling/initializers_test.py
Alexander Sidorov 016f72537a ModelHelper.create_param, Initializer abstraction and ParameterInfo for optimizers
Summary:
This is going to unblock Nvidia in their work on adding fp16
support to Caffe2. I discussed this with kennyhorror before to make
sure this fits into his work on parameter sharing.

Reviewed By: kennyhorror

Differential Revision: D5127797

fbshipit-source-id: 4db155d320b1862570c23b77c4252bdacbf2296f
2017-05-25 22:03:15 -07:00

38 lines
1.3 KiB
Python

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
import unittest
from caffe2.python import brew, model_helper
from caffe2.python.modeling.initializers import (
Initializer,
create_xavier_fill_initializer,
)
class InitializerTest(unittest.TestCase):
def test_fc_initializer(self):
model = model_helper.ModelHelper(name="test")
data = model.net.AddExternalInput("data")
fc1 = brew.fc(model, data, "fc1", dim_in=1, dim_out=1)
fc2 = brew.fc(model, fc1, "fc2", dim_in=1, dim_out=1,
weight_initializer=create_xavier_fill_initializer())
# no operator name set, will use default
fc3 = brew.fc(model, fc2, "fc3", dim_in=1, dim_out=1,
weight_initializer=Initializer())
# no operator name set, will use custom
fc4 = brew.fc(model, fc3, "fc4", dim_in=1, dim_out=1,
weight_initializer=Initializer(),
weight_init=("ConstantFill", {}),
)
# conflicting operator name
with self.assertRaises(Exception):
brew.fc(model, fc4, "fc5", dim_in=1, dim_out=1,
weight_initializer=create_xavier_fill_initializer(),
weight_init=("ConstantFill", {}),
)