mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-06 12:20:52 +01:00
Summary:
Free scratch blobs at data workers exit. Also add utility function that you can use to reset gradient blobs easily:
from caffe2.python import utils
grad_blobs = [b for b in workspace.Blobs() if b.endswith("_grad") or b.endswith("_shared")]
utils.ResetBlobs(grad_blobs)
Reviewed By: rpenggithub
Differential Revision: D4955531
fbshipit-source-id: d33b2bb2b5247dd2c4cff51c82b1257c871a4179
242 lines
7.1 KiB
Python
242 lines
7.1 KiB
Python
## @package utils
|
|
# Module caffe2.python.utils
|
|
from caffe2.proto import caffe2_pb2
|
|
from google.protobuf.message import DecodeError, Message
|
|
from google.protobuf import text_format
|
|
import collections
|
|
import functools
|
|
import numpy as np
|
|
import sys
|
|
|
|
|
|
if sys.version_info > (3,):
|
|
# This is python 3. We will define a few stuff that we used.
|
|
basestring = str
|
|
long = int
|
|
|
|
|
|
def CaffeBlobToNumpyArray(blob):
|
|
if (blob.num != 0):
|
|
# old style caffe blob.
|
|
return (np.asarray(blob.data, dtype=np.float32)
|
|
.reshape(blob.num, blob.channels, blob.height, blob.width))
|
|
else:
|
|
# new style caffe blob.
|
|
return (np.asarray(blob.data, dtype=np.float32)
|
|
.reshape(blob.shape.dim))
|
|
|
|
|
|
def Caffe2TensorToNumpyArray(tensor):
|
|
if tensor.data_type == caffe2_pb2.TensorProto.FLOAT:
|
|
return np.asarray(
|
|
tensor.float_data, dtype=np.float32).reshape(tensor.dims)
|
|
elif tensor.data_type == caffe2_pb2.TensorProto.DOUBLE:
|
|
return np.asarray(
|
|
tensor.double_data, dtype=np.float64).reshape(tensor.dims)
|
|
elif tensor.data_type == caffe2_pb2.TensorProto.INT32:
|
|
return np.asarray(
|
|
tensor.double_data, dtype=np.int).reshape(tensor.dims)
|
|
else:
|
|
# TODO: complete the data type.
|
|
raise RuntimeError(
|
|
"Tensor data type not supported yet: " + str(tensor.data_type))
|
|
|
|
|
|
def NumpyArrayToCaffe2Tensor(arr, name=None):
|
|
tensor = caffe2_pb2.TensorProto()
|
|
tensor.dims.extend(arr.shape)
|
|
if name:
|
|
tensor.name = name
|
|
if arr.dtype == np.float32:
|
|
tensor.data_type = caffe2_pb2.TensorProto.FLOAT
|
|
tensor.float_data.extend(list(arr.flatten().astype(float)))
|
|
elif arr.dtype == np.float64:
|
|
tensor.data_type = caffe2_pb2.TensorProto.DOUBLE
|
|
tensor.double_data.extend(list(arr.flatten().astype(np.float64)))
|
|
elif arr.dtype == np.int:
|
|
tensor.data_type = caffe2_pb2.TensorProto.INT32
|
|
tensor.int32_data.extend(list(arr.flatten().astype(np.int)))
|
|
else:
|
|
# TODO: complete the data type.
|
|
raise RuntimeError(
|
|
"Numpy data type not supported yet: " + str(arr.dtype))
|
|
return tensor
|
|
|
|
|
|
def MakeArgument(key, value):
|
|
"""Makes an argument based on the value type."""
|
|
argument = caffe2_pb2.Argument()
|
|
argument.name = key
|
|
iterable = isinstance(value, collections.Iterable)
|
|
|
|
if isinstance(value, np.ndarray):
|
|
value = value.flatten().tolist()
|
|
elif isinstance(value, np.generic):
|
|
# convert numpy scalar to native python type
|
|
value = np.asscalar(value)
|
|
|
|
if type(value) is float:
|
|
argument.f = value
|
|
elif type(value) is int or type(value) is bool or type(value) is long:
|
|
# We make a relaxation that a boolean variable will also be stored as
|
|
# int.
|
|
argument.i = value
|
|
elif isinstance(value, basestring):
|
|
argument.s = (value if type(value) is bytes
|
|
else value.encode('utf-8'))
|
|
elif isinstance(value, Message):
|
|
argument.s = value.SerializeToString()
|
|
elif iterable and all(type(v) in [float, np.float_] for v in value):
|
|
argument.floats.extend(value)
|
|
elif iterable and all(type(v) in [int, bool, long, np.int_] for v in value):
|
|
argument.ints.extend(value)
|
|
elif iterable and all(isinstance(v, basestring) for v in value):
|
|
argument.strings.extend([
|
|
(v if type(v) is bytes else v.encode('utf-8')) for v in value])
|
|
elif iterable and all(isinstance(v, Message) for v in value):
|
|
argument.strings.extend([v.SerializeToString() for v in value])
|
|
else:
|
|
raise ValueError(
|
|
"Unknown argument type: key=%s value=%s, value type=%s" %
|
|
(key, str(value), str(type(value)))
|
|
)
|
|
return argument
|
|
|
|
|
|
def TryReadProtoWithClass(cls, s):
|
|
"""Reads a protobuffer with the given proto class.
|
|
|
|
Inputs:
|
|
cls: a protobuffer class.
|
|
s: a string of either binary or text protobuffer content.
|
|
|
|
Outputs:
|
|
proto: the protobuffer of cls
|
|
|
|
Throws:
|
|
google.protobuf.message.DecodeError: if we cannot decode the message.
|
|
"""
|
|
obj = cls()
|
|
try:
|
|
text_format.Parse(s, obj)
|
|
return obj
|
|
except text_format.ParseError:
|
|
obj.ParseFromString(s)
|
|
return obj
|
|
|
|
|
|
def GetContentFromProto(obj, function_map):
|
|
"""Gets a specific field from a protocol buffer that matches the given class
|
|
"""
|
|
for cls, func in function_map.items():
|
|
if type(obj) is cls:
|
|
return func(obj)
|
|
|
|
|
|
def GetContentFromProtoString(s, function_map):
|
|
for cls, func in function_map.items():
|
|
try:
|
|
obj = TryReadProtoWithClass(cls, s)
|
|
return func(obj)
|
|
except DecodeError:
|
|
continue
|
|
else:
|
|
raise DecodeError("Cannot find a fit protobuffer class.")
|
|
|
|
|
|
def ConvertProtoToBinary(proto_class, filename, out_filename):
|
|
"""Convert a text file of the given protobuf class to binary."""
|
|
proto = TryReadProtoWithClass(proto_class, open(filename).read())
|
|
with open(out_filename, 'w') as fid:
|
|
fid.write(proto.SerializeToString())
|
|
|
|
|
|
def GetGPUMemoryUsageStats():
|
|
"""Get GPU memory usage stats from CUDAContext. This requires flag
|
|
--caffe2_gpu_memory_tracking to be enabled"""
|
|
from caffe2.python import workspace, core
|
|
workspace.RunOperatorOnce(
|
|
core.CreateOperator(
|
|
"GetGPUMemoryUsage",
|
|
[],
|
|
["____mem____"],
|
|
device_option=core.DeviceOption(caffe2_pb2.CUDA, 0),
|
|
),
|
|
)
|
|
b = workspace.FetchBlob("____mem____")
|
|
return {
|
|
'total_by_gpu': b[0, :],
|
|
'max_by_gpu': b[1, :],
|
|
'total': np.sum(b[0, :]),
|
|
'max_total': np.sum(b[1, :])
|
|
}
|
|
|
|
|
|
def ResetBlobs(blobs):
|
|
from caffe2.python import workspace, core
|
|
workspace.RunOperatorOnce(
|
|
core.CreateOperator(
|
|
"Free",
|
|
list(blobs),
|
|
list(blobs),
|
|
device_option=core.DeviceOption(caffe2_pb2.CPU),
|
|
),
|
|
)
|
|
|
|
|
|
class DebugMode(object):
|
|
'''
|
|
This class allows to drop you into an interactive debugger
|
|
if there is an unhandled exception in your python script
|
|
|
|
Example of usage:
|
|
|
|
def main():
|
|
# your code here
|
|
pass
|
|
|
|
if __name__ == '__main__':
|
|
from caffe2.python.utils import DebugMode
|
|
DebugMode.run(main)
|
|
'''
|
|
|
|
@classmethod
|
|
def run(cls, func):
|
|
try:
|
|
return func()
|
|
except KeyboardInterrupt:
|
|
raise
|
|
except Exception:
|
|
import pdb
|
|
|
|
print(
|
|
'Entering interactive debugger. Type "bt" to print '
|
|
'the full stacktrace. Type "help" to see command listing.')
|
|
print(sys.exc_info()[1])
|
|
print
|
|
|
|
pdb.post_mortem()
|
|
sys.exit(1)
|
|
raise
|
|
|
|
|
|
def debug(f):
|
|
'''
|
|
Use this method to decorate your function with DebugMode's functionality
|
|
|
|
Example:
|
|
|
|
@debug
|
|
def test_foo(self):
|
|
raise Exception("Bar")
|
|
|
|
'''
|
|
|
|
@functools.wraps(f)
|
|
def wrapper(*args, **kwargs):
|
|
def func():
|
|
return f(*args, **kwargs)
|
|
DebugMode.run(func)
|
|
|
|
return wrapper
|