mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-06 12:20:52 +01:00
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/32734 VariableTensorId is the only key with this treatment today, but BackendSelect and CompoundOp are coming soon. Signed-off-by: Edward Z. Yang <ezyang@fb.com> Test Plan: Imported from OSS Differential Revision: D19628091 Pulled By: ezyang fbshipit-source-id: 250753f90528fa282af7a18d8d2f7736382754bd
281 lines
8.6 KiB
C++
281 lines
8.6 KiB
C++
#include <c10/core/TensorImpl.h>
|
|
|
|
#include <c10/core/Backend.h>
|
|
#include <c10/core/WrapDimMinimal.h>
|
|
#include <c10/core/impl/LocalDispatchKeySet.h>
|
|
#include <c10/util/Optional.h>
|
|
|
|
C10_DEFINE_bool(
|
|
caffe2_keep_on_shrink,
|
|
true,
|
|
"If set, keeps memory when a tensor is shrinking its size.");
|
|
|
|
C10_DEFINE_int64(
|
|
caffe2_max_keep_on_shrink_memory,
|
|
LLONG_MAX,
|
|
"The maximum memory in bytes to keep on shrink, if the difference between "
|
|
"tensor sizes is bigger than this then tensor will be reset.");
|
|
|
|
namespace c10 {
|
|
|
|
const char * const TensorImpl::err_msg_tensor_metadata_change_not_allowed =
|
|
"is not allowed on a Tensor created from .data or .detach().\n"
|
|
"If your intent is to change the metadata of a Tensor (such as sizes / strides / storage / storage_offset)\n"
|
|
"without autograd tracking the change, remove the .data / .detach() call and wrap the change in a `with torch.no_grad():` block.\n"
|
|
"For example, change:\n"
|
|
" x.data.set_(y)\n"
|
|
"to:\n"
|
|
" with torch.no_grad():\n"
|
|
" x.set_(y)";
|
|
|
|
at::Tensor& TensorImpl::grad() {
|
|
if (!autograd_meta_) autograd_meta_ = impl::GetAutogradMetaFactory()->make();
|
|
return autograd_meta_->grad();
|
|
}
|
|
|
|
const at::Tensor& TensorImpl::grad() const {
|
|
// Yes, I know this looks really weird. But I don't really have a choice as
|
|
// long as this function returns a const reference to Tensor. I'm not
|
|
// really sure how I would have designed this API differently, but it
|
|
// is not so easy to fix right now because the mutable counterpart of
|
|
// this function must keep working so that "x.grad() = ..." keeps working
|
|
// (part of public API).
|
|
if (!autograd_meta_) return impl::GetAutogradMetaFactory()->undefined_tensor();
|
|
return autograd_meta_->grad();
|
|
}
|
|
|
|
TensorImpl::TensorImpl(Storage&& storage, DispatchKeySet key_set)
|
|
: TensorImpl(std::move(storage), key_set, storage.dtype(), storage.device()) {}
|
|
|
|
TensorImpl::TensorImpl(DispatchKeySet key_set, const caffe2::TypeMeta& data_type, c10::optional<c10::Device> device_opt)
|
|
: TensorImpl({}, key_set, data_type, std::move(device_opt)) {}
|
|
|
|
TensorImpl::TensorImpl(Storage&& storage, DispatchKeySet key_set, const caffe2::TypeMeta& data_type,
|
|
c10::optional<c10::Device> device_opt)
|
|
: storage_(std::move(storage)),
|
|
sizes_{0},
|
|
storage_offset_(0),
|
|
numel_(0),
|
|
data_type_(data_type),
|
|
device_opt_(device_opt),
|
|
key_set_(key_set) {
|
|
if (!key_set.empty()) {
|
|
AT_ASSERT(data_type.id() == caffe2::TypeIdentifier::uninitialized() ||
|
|
device_opt_.has_value());
|
|
// UndefinedTensorImpl is a singleton, so we skip logging it
|
|
C10_LOG_API_USAGE_ONCE("tensor.create");
|
|
}
|
|
// we would also like to check that non-cpu devices have an index, but some Caffe2 operators create
|
|
// Storages with default devices.
|
|
strides_.push_back(1);
|
|
}
|
|
|
|
IntArrayRef TensorImpl::sizes() const {
|
|
return sizes_;
|
|
}
|
|
|
|
IntArrayRef TensorImpl::strides() const {
|
|
return strides_;
|
|
}
|
|
|
|
bool TensorImpl::compute_contiguous() const {
|
|
bool is_contiguous = true;
|
|
if (is_empty())
|
|
return is_contiguous;
|
|
int64_t z = 1;
|
|
for (int64_t d = dim() - 1; d >= 0; d--) {
|
|
if (sizes_[d] != 1) {
|
|
if (strides_[d] == z) {
|
|
z *= sizes_[d];
|
|
} else {
|
|
is_contiguous = false;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
return is_contiguous;
|
|
}
|
|
|
|
bool TensorImpl::compute_channels_last_contiguous() const {
|
|
if (sizes_.size() == 4) {
|
|
int64_t expected = 1;
|
|
for (auto& d : {1, 3, 2, 0}) {
|
|
if (sizes_[d] != 1) {
|
|
if (strides_[d] == expected) {
|
|
expected *= sizes_[d];
|
|
} else {
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool TensorImpl::compute_strides_like_channels_last() const {
|
|
return is_channels_last_strides(sizes_, strides_);
|
|
}
|
|
|
|
bool TensorImpl::compute_non_overlapping_and_dense() const {
|
|
if (dim() == 1) {
|
|
return sizes_[0] < 2 || strides_[0] == 1;
|
|
}
|
|
SmallVector<int64_t,5> perm;
|
|
perm.resize(dim());
|
|
for (int64_t i = 0; i < dim(); i ++) {
|
|
perm[i] = i;
|
|
}
|
|
// Sort by strides, leaving 0 and 1 sized dims at the end of the array
|
|
std::sort(perm.begin(), perm.end(), [&](int64_t a, int64_t b) {
|
|
if (sizes_[a] < 2) {
|
|
return false;
|
|
} else if (sizes_[b] < 2) {
|
|
return true;
|
|
}
|
|
return strides_[a] < strides_[b];
|
|
});
|
|
auto require_stride = 1;
|
|
for (int64_t i = 0; i < dim(); i ++) {
|
|
if (sizes_[perm[i]] < 2) {
|
|
return true;
|
|
}
|
|
if (strides_[perm[i]] != require_stride) {
|
|
return false;
|
|
}
|
|
require_stride *= sizes_[perm[i]];
|
|
}
|
|
return true;
|
|
}
|
|
|
|
void TensorImpl::release_resources() {
|
|
autograd_meta_.reset();
|
|
if (storage_) {
|
|
storage_ = {};
|
|
}
|
|
}
|
|
|
|
int64_t TensorImpl::dim() const {
|
|
return sizes_.size();
|
|
}
|
|
|
|
int64_t TensorImpl::size(int64_t d) const {
|
|
d = at::maybe_wrap_dim(d, dim(), false);
|
|
return sizes_[d];
|
|
}
|
|
|
|
int64_t TensorImpl::stride(int64_t d) const {
|
|
d = at::maybe_wrap_dim(d, dim(), false);
|
|
return strides_[d];
|
|
}
|
|
|
|
bool TensorImpl::has_storage() const {
|
|
return storage_;
|
|
}
|
|
|
|
bool TensorImpl::is_contiguous(at::MemoryFormat memory_format) const {
|
|
#ifdef DEBUG
|
|
AT_ASSERT(compute_contiguous() == is_contiguous_);
|
|
#endif
|
|
if (memory_format == at::MemoryFormat::ChannelsLast) {
|
|
return is_channels_last_contiguous_;
|
|
}
|
|
return is_contiguous_;
|
|
}
|
|
|
|
const Storage& TensorImpl::storage() const {
|
|
return storage_;
|
|
}
|
|
|
|
static void deletePlacementDeleteContext(void* ptr) {
|
|
delete static_cast<PlacementDeleteContext*>(ptr);
|
|
}
|
|
|
|
at::DataPtr PlacementDeleteContext::makeDataPtr(
|
|
at::DataPtr&& data_ptr,
|
|
PlacementDtor placement_dtor,
|
|
size_t size,
|
|
at::Device device) {
|
|
auto* ptr = data_ptr.get();
|
|
return {ptr,
|
|
new PlacementDeleteContext(std::move(data_ptr), placement_dtor, size),
|
|
&deletePlacementDeleteContext,
|
|
device};
|
|
}
|
|
|
|
AutogradMetaInterface::~AutogradMetaInterface() {}
|
|
|
|
void TensorImpl::set_requires_grad(bool requires_grad) {
|
|
if (!requires_grad && !autograd_meta_) return;
|
|
if (!autograd_meta_) autograd_meta_ = impl::GetAutogradMetaFactory()->make();
|
|
// NB: In principle, setting requires_grad to false could result in
|
|
// the AutogradMeta becoming equal to a default constructed state,
|
|
// in which case we could apply the nullptr AutogradMeta optimization
|
|
// (see autograd_meta_ docs). But we don't do this right now. Note
|
|
// that it is unsound to unconditionally set AutogradMeta to false
|
|
// when you set requires_grad to False, as there may be nontrivial
|
|
// information content in the other fields; for example, we may
|
|
// have set the string name for a Variable, or there may be hooks
|
|
// registered for it.
|
|
autograd_meta_->set_requires_grad(requires_grad, this);
|
|
}
|
|
|
|
bool TensorImpl::requires_grad() const {
|
|
if (!autograd_meta_) return false;
|
|
return autograd_meta_->requires_grad();
|
|
}
|
|
|
|
void TensorImpl::set_autograd_meta(std::unique_ptr<c10::AutogradMetaInterface> autograd_meta) {
|
|
// NB: autograd_meta may be null! That just means it's the default
|
|
// constructor
|
|
autograd_meta_ = std::move(autograd_meta);
|
|
}
|
|
|
|
c10::AutogradMetaInterface* TensorImpl::autograd_meta() const {
|
|
// NB: Might return null!
|
|
return autograd_meta_.get();
|
|
}
|
|
|
|
void TensorImpl::copy_tensor_metadata(
|
|
const TensorImpl* src_impl,
|
|
TensorImpl* dest_impl,
|
|
const c10::VariableVersion& version_counter,
|
|
bool allow_tensor_metadata_change) {
|
|
dest_impl->storage_ = src_impl->storage_;
|
|
dest_impl->sizes_ = src_impl->sizes_;
|
|
dest_impl->strides_ = src_impl->strides_;
|
|
dest_impl->storage_offset_ = src_impl->storage_offset_;
|
|
dest_impl->data_type_ = src_impl->data_type_;
|
|
dest_impl->device_opt_ = src_impl->device_opt_;
|
|
dest_impl->key_set_ = src_impl->key_set_;
|
|
dest_impl->is_contiguous_ = src_impl->is_contiguous_;
|
|
dest_impl->is_channels_last_contiguous_ = src_impl->is_channels_last_contiguous_;
|
|
dest_impl->is_channels_last_ = src_impl->is_channels_last_;
|
|
dest_impl->is_non_overlapping_and_dense_ = src_impl->is_non_overlapping_and_dense_;
|
|
dest_impl->is_wrapped_number_ = src_impl->is_wrapped_number_;
|
|
dest_impl->reserved_ = src_impl->reserved_;
|
|
dest_impl->set_version_counter(version_counter);
|
|
dest_impl->set_allow_tensor_metadata_change(allow_tensor_metadata_change);
|
|
if (src_impl->named_tensor_meta_ != nullptr) {
|
|
dest_impl->named_tensor_meta_ = src_impl->named_tensor_meta_->clone();
|
|
}
|
|
}
|
|
|
|
namespace impl {
|
|
|
|
namespace {
|
|
AutogradMetaFactory* meta_factory = nullptr;
|
|
}
|
|
|
|
void SetAutogradMetaFactory(AutogradMetaFactory* factory) {
|
|
meta_factory = factory;
|
|
}
|
|
AutogradMetaFactory* GetAutogradMetaFactory() {
|
|
TORCH_CHECK(meta_factory, "Support for autograd has not been loaded; have you linked against libtorch.so?")
|
|
return meta_factory;
|
|
}
|
|
|
|
} // namespace impl
|
|
|
|
} // namespace c10
|