mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-07 12:21:27 +01:00
Currently if we have an inplaced buffer that's completely internal to a fused kernel and thus doesn't need to be allocated, we are still allocating it and sending unused argument to a kernel, because our analysis for removing buffers treats it separately (assuming that either original or mutated value are still needed). This PR extends buffer removal to inplaced buffers that can be removed. Generated kernel for e.g. ln changes from ``` def triton_(in_out_ptr0, in_out_ptr1, in_ptr0, in_ptr1, in_ptr2, out_ptr0, out_ptr1, xnumel, rnumel, XBLOCK : tl.constexpr): ``` where in_out_ptr0 is unused in the kernel to ``` def triton_(in_out_ptr1, in_ptr0, in_ptr1, in_ptr2, out_ptr0, out_ptr1, xnumel, rnumel, XBLOCK : tl.constexpr): ``` and corresponding allocation/reuse lines in the wrapper are removed. The `in_out_ptr1` is also mislabeled - it's not `in_out`, it's only written to, but this PR doesn't fix it. Pull Request resolved: https://github.com/pytorch/pytorch/pull/102289 Approved by: https://github.com/jansel
1221 lines
41 KiB
Python
1221 lines
41 KiB
Python
import collections
|
|
import contextlib
|
|
import dataclasses
|
|
import functools
|
|
import hashlib
|
|
import os
|
|
import re
|
|
from itertools import count
|
|
from typing import Any, Dict, List, Optional, Tuple
|
|
|
|
import sympy
|
|
from sympy import Expr
|
|
|
|
import torch
|
|
from torch._dynamo.utils import counters, dynamo_timed
|
|
from torch.fx.experimental.symbolic_shapes import SymTypes
|
|
from .. import codecache, config, ir
|
|
from ..codecache import CudaKernelParamCache
|
|
from ..utils import (
|
|
cache_on_self,
|
|
get_benchmark_name,
|
|
LineContext,
|
|
sympy_dot,
|
|
sympy_product,
|
|
)
|
|
from ..virtualized import V
|
|
from .common import CodeGen, DeferredLine, IndentedBuffer, Kernel, PythonPrinter
|
|
|
|
|
|
pexpr = PythonPrinter().doprint
|
|
|
|
|
|
def buffer_reuse_key(node: ir.Buffer):
|
|
size = node.get_size()
|
|
stride = node.get_stride()
|
|
last_element = sympy_dot([s - 1 for s in size], stride)
|
|
return (
|
|
node.get_device(),
|
|
node.get_dtype(),
|
|
V.graph.sizevars.simplify(sympy_product(size)),
|
|
# Detect gaps in tensor storage caused by strides
|
|
V.graph.sizevars.size_hint(last_element),
|
|
)
|
|
|
|
|
|
def is_int(s: str):
|
|
try:
|
|
int(s)
|
|
except ValueError:
|
|
return False
|
|
return True
|
|
|
|
|
|
def is_float(s: str):
|
|
try:
|
|
float(s)
|
|
except ValueError:
|
|
return False
|
|
return True
|
|
|
|
|
|
def convert_arg_type(python_type):
|
|
from .cpp import PYTHON_TO_CPP
|
|
|
|
if python_type == "Tensor":
|
|
# Conversions rules follow https://github.com/pytorch/pytorch/tree/main/aten/src/ATen/native#func
|
|
return f"at::{python_type} const&"
|
|
|
|
# Convert arg of type Optional[*]
|
|
optional_match = re.findall(r"Optional\[([a-zA-Z_]+)]", python_type)
|
|
if len(optional_match) == 1:
|
|
optional_type = optional_match[0]
|
|
assert (
|
|
optional_type in PYTHON_TO_CPP
|
|
), f"unsupported optional type in convert_arg_type: {optional_type}"
|
|
cpp_optional_type = PYTHON_TO_CPP[optional_type]
|
|
return f"c10::optional<{cpp_optional_type}>"
|
|
|
|
raise AssertionError(f"unsupport python_type: {python_type}")
|
|
|
|
|
|
def convert_return_type(python_type):
|
|
# TODO: only support Tensor as func return type for now
|
|
# TODO: support alias
|
|
assert (
|
|
python_type == "Tensor"
|
|
), f"only support tensor output for cpp_wrapper, but receive type {python_type}"
|
|
return f"at::{python_type}"
|
|
|
|
|
|
def get_cpp_op_schema(kernel):
|
|
arg_types = [repr(x.type) for x in kernel._schema.arguments]
|
|
arg_names = [x.name for x in kernel._schema.arguments]
|
|
# TODO: only support len(returns) == 1 for now.
|
|
returns = [repr(x.type) for x in kernel._schema.returns]
|
|
assert (
|
|
len(returns) == 1
|
|
), f"only support 1 single output for cpp_wrapper, but {kernel.__name__} has {len(returns)} outputs"
|
|
return_value = returns[0]
|
|
cpp_return_value = convert_return_type(return_value)
|
|
|
|
cpp_arg_type = [
|
|
f"{convert_arg_type(arg_type)} {arg_name}"
|
|
for arg_type, arg_name in zip(arg_types, arg_names)
|
|
]
|
|
return f"{cpp_return_value}({', '.join(cpp_arg_type)})"
|
|
|
|
|
|
SUPPORTED_FALLBACK_CPP_WRAPPER = [
|
|
"repeat_interleave.Tensor",
|
|
]
|
|
|
|
|
|
class MemoryPlanningState:
|
|
def __init__(self):
|
|
super().__init__()
|
|
self.reuse_pool: Dict[
|
|
Any, List["FreeIfNotReusedLine"]
|
|
] = collections.defaultdict(list)
|
|
|
|
def __contains__(self, key):
|
|
return bool(self.reuse_pool.get(key, None))
|
|
|
|
def pop(self, key) -> "FreeIfNotReusedLine":
|
|
item = self.reuse_pool[key].pop()
|
|
assert not item.is_reused
|
|
return item
|
|
|
|
def push(self, key, item: "FreeIfNotReusedLine"):
|
|
assert not item.is_reused
|
|
self.reuse_pool[key].append(item)
|
|
|
|
|
|
@dataclasses.dataclass
|
|
class EnterCudaDeviceContextManagerLine:
|
|
device_idx: int
|
|
first_time: bool
|
|
|
|
def codegen(self, code: IndentedBuffer, device_cm_stack: contextlib.ExitStack):
|
|
if V.graph.cpp_wrapper:
|
|
code.writeline("\n")
|
|
if self.first_time:
|
|
code.writeline(f"at::cuda::CUDAGuard device_guard({self.device_idx});")
|
|
else:
|
|
code.writeline(f"device_guard.set_index({self.device_idx});")
|
|
else:
|
|
# Note _DeviceGuard has less overhead than device, but only accepts
|
|
# integers
|
|
code.writeline(f"with torch.cuda._DeviceGuard({self.device_idx}):")
|
|
device_cm_stack.enter_context(code.indent())
|
|
code.writeline(
|
|
f"torch.cuda.set_device({self.device_idx}) # no-op to ensure context"
|
|
)
|
|
|
|
|
|
class ExitCudaDeviceContextManagerLine:
|
|
def codegen(self, code: IndentedBuffer, device_cm_stack: contextlib.ExitStack):
|
|
if not V.graph.cpp_wrapper:
|
|
device_cm_stack.close()
|
|
|
|
|
|
@dataclasses.dataclass
|
|
class MemoryPlanningLine:
|
|
wrapper: "WrapperCodeGen"
|
|
|
|
def plan(self, state: MemoryPlanningState) -> "MemoryPlanningLine":
|
|
"""First pass to find reuse"""
|
|
return self
|
|
|
|
def codegen(self, code: IndentedBuffer):
|
|
"""Second pass to output code"""
|
|
pass
|
|
|
|
|
|
@dataclasses.dataclass
|
|
class AllocateLine(MemoryPlanningLine):
|
|
node: ir.Buffer
|
|
|
|
def plan(self, state: MemoryPlanningState):
|
|
if self.node.get_name() in V.graph.removed_buffers:
|
|
return NullLine(self.wrapper)
|
|
|
|
# try to reuse a recently freed buffer
|
|
key = buffer_reuse_key(self.node)
|
|
if key in state:
|
|
free_line = state.pop(key)
|
|
free_line.is_reused = True
|
|
return ReuseLine(self.wrapper, free_line.node, self.node)
|
|
|
|
return self
|
|
|
|
def codegen(self, code: IndentedBuffer):
|
|
assert self.node.get_name() not in V.graph.removed_buffers
|
|
line = self.wrapper.make_buffer_allocation(self.node)
|
|
code.writeline(line)
|
|
|
|
|
|
@dataclasses.dataclass
|
|
class FreeIfNotReusedLine(MemoryPlanningLine):
|
|
node: ir.Buffer
|
|
is_reused: bool = False
|
|
|
|
def plan(self, state: MemoryPlanningState):
|
|
assert not self.is_reused
|
|
if self.node.get_name() in V.graph.removed_buffers:
|
|
return NullLine(self.wrapper)
|
|
state.push(buffer_reuse_key(self.node), self)
|
|
return self
|
|
|
|
def codegen(self, code: IndentedBuffer):
|
|
assert self.node.get_name() not in V.graph.removed_buffers
|
|
if not self.is_reused:
|
|
code.writeline(self.wrapper.make_buffer_free(self.node))
|
|
|
|
|
|
@dataclasses.dataclass
|
|
class ReuseLine(MemoryPlanningLine):
|
|
node: ir.Buffer
|
|
reused_as: ir.Buffer
|
|
|
|
def plan(self, state: MemoryPlanningState):
|
|
if self.node.get_name() in V.graph.removed_buffers:
|
|
assert self.reused_as.get_name() in V.graph.removed_buffers
|
|
return NullLine(self.wrapper)
|
|
assert self.reused_as.get_name() not in V.graph.removed_buffers
|
|
return self
|
|
|
|
def codegen(self, code: IndentedBuffer):
|
|
assert self.node.get_name() not in V.graph.removed_buffers
|
|
assert self.reused_as.get_name() not in V.graph.removed_buffers
|
|
code.writeline(
|
|
self.wrapper.make_buffer_reuse(
|
|
self.node,
|
|
self.reused_as,
|
|
)
|
|
)
|
|
|
|
|
|
class NullLine(MemoryPlanningLine):
|
|
pass
|
|
|
|
|
|
class WrapperCodeGen(CodeGen):
|
|
"""
|
|
Generate outer wrapper in Python that calls the kernels.
|
|
"""
|
|
|
|
def __init__(self):
|
|
super().__init__()
|
|
self._names_iter = count()
|
|
self.header = IndentedBuffer()
|
|
self.prefix = IndentedBuffer()
|
|
self.wrapper_call = IndentedBuffer()
|
|
self.src_to_kernel = {}
|
|
self.kernel_to_hash = {}
|
|
self.lines = []
|
|
self.declare = ""
|
|
self.ending = ""
|
|
self.open_bracket = "["
|
|
self.closed_bracket = "]"
|
|
self.comment = "#"
|
|
self.namespace = ""
|
|
self.none_str = "None"
|
|
self.size = "size()"
|
|
self.stride = "stride()"
|
|
self.first_device_guard = True
|
|
self.supports_intermediate_hooks = True
|
|
|
|
self.write_header()
|
|
self.write_prefix()
|
|
|
|
for name, value in V.graph.constants.items():
|
|
# include a hash so our code cache gives different constants different files
|
|
hashed = hashlib.sha256(repr(value).encode("utf-8")).hexdigest()
|
|
self.header.writeline(f"{name} = None # {hashed}")
|
|
|
|
self.allocated = set()
|
|
self.freed = set()
|
|
|
|
# maps from reusing buffer to reused buffer
|
|
self.reuses = dict()
|
|
|
|
self.write_get_cuda_stream = functools.lru_cache(None)( # type: ignore[assignment]
|
|
self.write_get_cuda_stream
|
|
)
|
|
|
|
@functools.lru_cache(None)
|
|
def add_import_once(line):
|
|
self.header.writeline(line)
|
|
|
|
self.add_import_once = add_import_once
|
|
self._metas = {}
|
|
|
|
def write_header(self):
|
|
self.header.splice(
|
|
f"""
|
|
from ctypes import c_void_p, c_long
|
|
import torch
|
|
import math
|
|
import random
|
|
import os
|
|
import tempfile
|
|
from math import inf, nan
|
|
from torch._inductor.hooks import run_intermediate_hooks
|
|
from torch._inductor.utils import maybe_profile
|
|
|
|
from torch import empty_strided, as_strided, device
|
|
from {codecache.__name__} import AsyncCompile
|
|
from torch._inductor.select_algorithm import extern_kernels
|
|
|
|
aten = torch.ops.aten
|
|
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
|
|
async_compile = AsyncCompile()
|
|
|
|
"""
|
|
)
|
|
|
|
@cache_on_self
|
|
def write_triton_header_once(self):
|
|
self.header.splice(
|
|
"""
|
|
import triton
|
|
import triton.language as tl
|
|
from torch._inductor.triton_heuristics import grid, start_graph, end_graph
|
|
from torch._C import _cuda_getCurrentRawStream as get_cuda_stream
|
|
"""
|
|
)
|
|
|
|
def add_meta_once(self, meta):
|
|
meta = repr(meta)
|
|
if meta not in self._metas:
|
|
var = f"meta{len(self._metas)}"
|
|
self._metas[meta] = var
|
|
self.header.writeline(f"{var} = {meta}")
|
|
return self._metas[meta]
|
|
|
|
@cache_on_self
|
|
def get_output_refs(self):
|
|
return [x.codegen_reference() for x in V.graph.graph_outputs]
|
|
|
|
def mark_output_type(self):
|
|
return
|
|
|
|
def write_prefix(self):
|
|
self.prefix.splice(
|
|
"""
|
|
|
|
async_compile.wait(globals())
|
|
del async_compile
|
|
|
|
def call(args):
|
|
"""
|
|
)
|
|
with self.prefix.indent():
|
|
if config.triton.debug_sync_graph:
|
|
self.prefix.writeline("torch.cuda.synchronize()")
|
|
inp_len = len(V.graph.graph_inputs.keys())
|
|
if inp_len != 0:
|
|
lhs = f"{', '.join(V.graph.graph_inputs.keys())}{'' if inp_len != 1 else ','}"
|
|
self.prefix.writeline(f"{lhs} = args")
|
|
self.prefix.writeline("args.clear()")
|
|
self.codegen_inputs(self.prefix, V.graph.graph_inputs)
|
|
|
|
def write_get_cuda_stream(self, index):
|
|
self.write_triton_header_once()
|
|
name = f"stream{index}"
|
|
self.writeline(f"{name} = get_cuda_stream({index})")
|
|
return name
|
|
|
|
def next_kernel_suffix(self):
|
|
return f"{next(self._names_iter)}"
|
|
|
|
def codegen_cuda_device_guard_enter(self, device_idx):
|
|
self.writeline(
|
|
EnterCudaDeviceContextManagerLine(device_idx, self.first_device_guard)
|
|
)
|
|
self.first_device_guard = False
|
|
|
|
def codegen_cuda_device_guard_exit(self):
|
|
self.writeline(ExitCudaDeviceContextManagerLine())
|
|
|
|
def generate_return(self, output_refs):
|
|
if output_refs:
|
|
self.wrapper_call.writeline("return (" + ", ".join(output_refs) + ", )")
|
|
else:
|
|
self.wrapper_call.writeline("return ()")
|
|
|
|
def generate_end(self, result):
|
|
return
|
|
|
|
def generate_extern_kernel_alloc(self, output_name, kernel, args, origin_node):
|
|
self.writeline(
|
|
f"{self.declare}{output_name} = {kernel}({', '.join(args)}){self.ending}"
|
|
)
|
|
if (
|
|
self.supports_intermediate_hooks
|
|
and config.generate_intermediate_hooks
|
|
and origin_node is not None
|
|
):
|
|
counters["inductor"]["intermediate_hooks"] += 1
|
|
self.writeline(
|
|
f"run_intermediate_hooks({origin_node.name!r}, {output_name})"
|
|
)
|
|
|
|
def generate_extern_kernel_out(self, output_view, codegen_reference, args, kernel):
|
|
if output_view:
|
|
args.append(f"out={output_view.codegen_reference()}")
|
|
else:
|
|
args.append(f"out={codegen_reference}")
|
|
self.writeline(f"{kernel}({', '.join(args)})")
|
|
|
|
def generate_extern_kernel_alloc_and_find_schema_if_needed(
|
|
self,
|
|
name,
|
|
kernel,
|
|
codegen_args,
|
|
cpp_op_schema,
|
|
cpp_kernel_key,
|
|
cpp_kernel_overload_name="",
|
|
):
|
|
self.writeline(f"{name} = {kernel}({', '.join(codegen_args)})")
|
|
|
|
@dynamo_timed
|
|
def generate(self):
|
|
result = IndentedBuffer()
|
|
result.splice(self.header)
|
|
|
|
out_names = V.graph.get_output_names()
|
|
with contextlib.ExitStack() as stack:
|
|
stack.enter_context(self.wrapper_call.indent())
|
|
if config.profiler_mark_wrapper_call:
|
|
self.generate_profiler_mark_wrapper_call(stack)
|
|
if config.profile_bandwidth:
|
|
self.write_triton_header_once()
|
|
self.wrapper_call.writeline("start_graph()")
|
|
|
|
while (
|
|
self.lines
|
|
and isinstance(self.lines[-1], MemoryPlanningLine)
|
|
# TODO: this seems legit, NullLine has no node
|
|
and self.lines[-1].node.name not in out_names # type: ignore[attr-defined]
|
|
):
|
|
# these lines will be pointless
|
|
self.lines.pop()
|
|
|
|
# codegen allocations in two passes
|
|
planning_state = MemoryPlanningState()
|
|
for i in range(len(self.lines)):
|
|
if isinstance(self.lines[i], MemoryPlanningLine):
|
|
self.lines[i] = self.lines[i].plan(planning_state)
|
|
|
|
device_cm_stack = contextlib.ExitStack()
|
|
for line in self.lines:
|
|
if isinstance(line, MemoryPlanningLine):
|
|
line.codegen(self.wrapper_call)
|
|
elif isinstance(
|
|
line,
|
|
(
|
|
EnterCudaDeviceContextManagerLine,
|
|
ExitCudaDeviceContextManagerLine,
|
|
),
|
|
):
|
|
line.codegen(self.wrapper_call, device_cm_stack)
|
|
else:
|
|
self.wrapper_call.writeline(line)
|
|
|
|
output_refs = self.get_output_refs()
|
|
self.mark_output_type()
|
|
if config.triton.debug_sync_graph:
|
|
self.wrapper_call.writeline("torch.cuda.synchronize()")
|
|
|
|
if config.profile_bandwidth:
|
|
self.wrapper_call.writeline("end_graph()")
|
|
|
|
self.generate_return(output_refs)
|
|
|
|
self.append_precomputed_sizes_to_prefix()
|
|
result.splice(self.prefix)
|
|
|
|
with result.indent():
|
|
result.splice(self.wrapper_call)
|
|
|
|
self.generate_end(result)
|
|
|
|
self.add_benchmark_harness(result)
|
|
|
|
return result.getvaluewithlinemap()
|
|
|
|
def codegen_inputs(self, code: IndentedBuffer, graph_inputs: Dict[str, ir.Buffer]):
|
|
"""Assign all symbolic shapes to locals"""
|
|
|
|
@functools.lru_cache(None)
|
|
def sizeof(name):
|
|
code.writeline(
|
|
f"{self.declare}{name}_size = {name}.{self.size}{self.ending}"
|
|
)
|
|
return f"{name}_size"
|
|
|
|
@functools.lru_cache(None)
|
|
def strideof(name):
|
|
code.writeline(
|
|
f"{self.declare}{name}_stride = {name}.{self.stride}{self.ending}"
|
|
)
|
|
return f"{name}_stride"
|
|
|
|
# Assign all symbolic shapes needed to local variables
|
|
needed = set(V.graph.sizevars.var_to_val.keys()) - set(
|
|
V.graph.sizevars.replacements.keys()
|
|
)
|
|
|
|
def is_expr(x):
|
|
return isinstance(x[1], sympy.Expr)
|
|
|
|
graph_inputs_expr = list(filter(is_expr, graph_inputs.items()))
|
|
graph_inputs_tensors = list(
|
|
filter(lambda x: not is_expr(x), graph_inputs.items())
|
|
)
|
|
|
|
for name, shape in graph_inputs_expr:
|
|
shape = V.graph.sizevars.simplify(shape)
|
|
if shape in needed:
|
|
needed.remove(shape)
|
|
code.writeline(f"{self.declare}{shape} = {name}{self.ending}")
|
|
|
|
for name, value in graph_inputs_tensors:
|
|
shapes = value.get_size()
|
|
for dim, shape in enumerate(shapes):
|
|
shape = V.graph.sizevars.simplify(shape)
|
|
if shape in needed:
|
|
needed.remove(shape)
|
|
code.writeline(
|
|
f"{self.declare}{shape} = {sizeof(name)}[{dim}]{self.ending}"
|
|
)
|
|
|
|
for name, value in graph_inputs_tensors:
|
|
shapes = value.get_stride()
|
|
for dim, shape in enumerate(shapes):
|
|
shape = V.graph.sizevars.simplify(shape)
|
|
if shape in needed:
|
|
needed.remove(shape)
|
|
code.writeline(
|
|
f"{self.declare}{shape} = {strideof(name)}[{dim}]{self.ending}"
|
|
)
|
|
|
|
def append_precomputed_sizes_to_prefix(self):
|
|
with self.prefix.indent():
|
|
for sym, expr in V.graph.sizevars.inv_precomputed_replacements.items():
|
|
self.prefix.writeline(
|
|
f"{self.declare}{sym} = {pexpr(expr)}{self.ending}"
|
|
)
|
|
|
|
def codegen_python_sizevar(self, x: Expr) -> str:
|
|
return pexpr(V.graph.sizevars.simplify(x))
|
|
|
|
def codegen_sizevar(self, x: Expr) -> str:
|
|
return self.codegen_python_sizevar(x)
|
|
|
|
def codegen_tuple_access(self, basename: str, index: str) -> str:
|
|
return f"{basename}[{index}]"
|
|
|
|
def codegen_python_shape_tuple(self, shape: Tuple[Expr, ...]) -> str:
|
|
parts = list(map(self.codegen_python_sizevar, shape))
|
|
if len(parts) == 0:
|
|
return "()"
|
|
if len(parts) == 1:
|
|
return f"({parts[0]}, )"
|
|
return f"({', '.join(parts)})"
|
|
|
|
def codegen_shape_tuple(self, shape: Tuple[Expr, ...]) -> str:
|
|
return self.codegen_python_shape_tuple(shape)
|
|
|
|
def benchmark_compiled_module(self, output):
|
|
def add_fake_input(name, shape, stride, device, dtype):
|
|
output.writeline(
|
|
f"{name} = rand_strided("
|
|
f"{self.codegen_python_shape_tuple(shape)}, "
|
|
f"{self.codegen_python_shape_tuple(stride)}, "
|
|
f"device='{device}', dtype={dtype})"
|
|
)
|
|
|
|
def add_expr_input(name, val):
|
|
output.writeline(f"{name} = {val}")
|
|
|
|
output.writelines(
|
|
["", "", "def benchmark_compiled_module(times=10, repeat=10):"]
|
|
)
|
|
with output.indent():
|
|
output.splice(
|
|
"""
|
|
from torch._dynamo.testing import rand_strided
|
|
from torch._inductor.utils import print_performance
|
|
""",
|
|
strip=True,
|
|
)
|
|
|
|
for name, value in V.graph.constants.items():
|
|
# all the constants are global variables, that's why we need
|
|
# these 'global var_name' lines
|
|
output.writeline(f"global {name}")
|
|
add_fake_input(
|
|
name, value.size(), value.stride(), value.device, value.dtype
|
|
)
|
|
|
|
for name, value in V.graph.graph_inputs.items():
|
|
if isinstance(value, sympy.Expr): # Don't need to add symbolic
|
|
add_expr_input(name, V.graph.sizevars.size_hint(value))
|
|
else:
|
|
shape = [V.graph.sizevars.size_hint(x) for x in value.get_size()]
|
|
stride = [V.graph.sizevars.size_hint(x) for x in value.get_stride()]
|
|
add_fake_input(
|
|
name, shape, stride, value.get_device(), value.get_dtype()
|
|
)
|
|
|
|
call_str = f"call([{', '.join(V.graph.graph_inputs.keys())}])"
|
|
output.writeline(
|
|
f"return print_performance(lambda: {call_str}, times=times, repeat=repeat)"
|
|
)
|
|
|
|
def add_benchmark_harness(self, output):
|
|
"""
|
|
Append a benchmark harness to generated code for debugging
|
|
"""
|
|
if not config.benchmark_harness:
|
|
return
|
|
|
|
self.benchmark_compiled_module(output)
|
|
|
|
output.writelines(["", "", 'if __name__ == "__main__":'])
|
|
with output.indent():
|
|
output.writelines(
|
|
[
|
|
"from torch._inductor.utils import compiled_module_main",
|
|
f"compiled_module_main('{get_benchmark_name()}', benchmark_compiled_module)",
|
|
]
|
|
)
|
|
|
|
def define_kernel(
|
|
self, name: str, kernel: str, metadata: Optional[str] = None, cuda=True
|
|
):
|
|
metadata_comment = f"{metadata}\n" if metadata else ""
|
|
self.header.splice(f"\n\n{metadata_comment}{name} = {kernel}")
|
|
|
|
def wrap_kernel_call(self, name, call_args):
|
|
return f"{name}({', '.join(call_args)}){self.ending}"
|
|
|
|
def generate_profiler_mark_wrapper_call(self, stack):
|
|
self.wrapper_call.writeline("from torch.profiler import record_function")
|
|
self.wrapper_call.writeline(
|
|
f"with record_function('graph_{V.graph.graph_id}_inductor_wrapper_call'):"
|
|
)
|
|
stack.enter_context(self.wrapper_call.indent())
|
|
|
|
def generate_kernel_call(
|
|
self, name, call_args, grid=None, device_index=None, cuda=True
|
|
):
|
|
if cuda:
|
|
call_args_str = ", ".join(pexpr(item) for item in call_args)
|
|
grid_str = ", ".join(pexpr(item) for item in grid)
|
|
stream_name = self.write_get_cuda_stream(
|
|
V.graph.scheduler.current_device.index
|
|
)
|
|
self.writeline(
|
|
f"{name}.run({call_args_str}, grid=grid({grid_str}), stream={stream_name})"
|
|
)
|
|
else:
|
|
self.writeline(self.wrap_kernel_call(name, call_args))
|
|
|
|
def call_kernel(self, name: str, kernel: Kernel):
|
|
tmp = IndentedBuffer()
|
|
kernel.call_kernel(self, tmp, name)
|
|
for line in tmp.getvalue().split("\n"):
|
|
line = line.strip()
|
|
if line:
|
|
self.writeline(line)
|
|
|
|
def writeline(self, line):
|
|
self.lines.append(line)
|
|
|
|
def enter_context(self, ctx):
|
|
self.lines.append(LineContext(ctx))
|
|
|
|
def val_to_str(self, s):
|
|
if isinstance(s, SymTypes):
|
|
return pexpr(sympy.expand(repr(s)))
|
|
elif isinstance(s, sympy.Expr):
|
|
return pexpr(s)
|
|
elif isinstance(s, (tuple, list)):
|
|
|
|
@dataclasses.dataclass
|
|
class Shim:
|
|
ref: Any
|
|
|
|
def __repr__(self):
|
|
return self.ref
|
|
|
|
return repr(type(s)(Shim(self.val_to_str(a)) for a in s))
|
|
else:
|
|
return repr(s)
|
|
|
|
# The following methods are for memory management
|
|
def make_buffer_allocation(self, buffer):
|
|
device = buffer.get_device()
|
|
dtype = buffer.get_dtype()
|
|
shape = tuple(buffer.get_size())
|
|
stride = tuple(buffer.get_stride())
|
|
return (
|
|
f"{buffer.get_name()} = empty_strided("
|
|
f"{self.codegen_shape_tuple(shape)}, "
|
|
f"{self.codegen_shape_tuple(stride)}, "
|
|
f"device='{device.type}', dtype={dtype})"
|
|
)
|
|
|
|
def make_buffer_free(self, buffer):
|
|
return f"del {buffer.get_name()}"
|
|
|
|
def make_buffer_reuse(self, old, new):
|
|
assert old.get_dtype() == new.get_dtype()
|
|
del_line = ""
|
|
if old.get_name() not in V.graph.get_output_names():
|
|
del_line = f"; {self.make_buffer_free(old)}"
|
|
if old.get_size() == new.get_size() and old.get_stride() == new.get_stride():
|
|
return f"{self.declare}{new.get_name()} = {old.get_name()}{del_line} {self.comment} reuse"
|
|
|
|
return (
|
|
f"{self.declare}{new.get_name()} = {self.namespace}as_strided({old.get_name()}, "
|
|
f"{self.codegen_shape_tuple(new.get_size())}, "
|
|
f"{self.codegen_shape_tuple(new.get_stride())}){del_line} {self.comment} reuse"
|
|
)
|
|
|
|
def codegen_deferred_allocation(self, name, layout):
|
|
self.writeline(
|
|
DeferredLine(
|
|
name,
|
|
f"{self.declare}{name} = {layout.view.codegen_reference()}{self.ending} {self.comment} alias",
|
|
)
|
|
)
|
|
|
|
def codegen_allocation(self, buffer):
|
|
name = buffer.get_name()
|
|
if name in V.graph.removed_buffers or name in self.allocated:
|
|
return
|
|
self.allocated.add(name)
|
|
if isinstance(
|
|
buffer,
|
|
(ir.ExternKernelAlloc, ir.MultiOutput),
|
|
):
|
|
return
|
|
|
|
layout = buffer.get_layout()
|
|
if isinstance(layout, ir.MutationLayout):
|
|
return
|
|
if isinstance(layout, ir.AliasedLayout):
|
|
assert isinstance(
|
|
layout.view, ir.ReinterpretView
|
|
), f"unexpected {type(layout.view)}: {layout.view}"
|
|
if not layout.maybe_guard_aligned():
|
|
V.graph.unaligned_buffers.add(name)
|
|
self.codegen_allocation(layout.view.data)
|
|
self.codegen_deferred_allocation(name, layout)
|
|
return
|
|
|
|
self.writeline(AllocateLine(self, buffer))
|
|
|
|
def codegen_free(self, buffer):
|
|
name = buffer.get_name()
|
|
|
|
if not config.allow_buffer_reuse:
|
|
self.writeline(self.make_buffer_free(buffer))
|
|
return
|
|
|
|
# can be freed but not reused
|
|
if isinstance(buffer, ir.InputBuffer):
|
|
self.writeline(self.make_buffer_free(buffer))
|
|
return
|
|
|
|
if not self.can_reuse(buffer):
|
|
return
|
|
self.freed.add(name)
|
|
|
|
layout = buffer.get_layout()
|
|
if isinstance(layout, (ir.AliasedLayout, ir.MultiOutputLayout)):
|
|
self.writeline(self.make_buffer_free(buffer))
|
|
return
|
|
|
|
self.writeline(FreeIfNotReusedLine(self, buffer))
|
|
|
|
def can_reuse(self, buffer):
|
|
name = buffer.get_name()
|
|
if (
|
|
name in V.graph.removed_buffers
|
|
or name in V.graph.graph_inputs
|
|
or name in V.graph.constants
|
|
or name in self.freed
|
|
):
|
|
return False
|
|
return True
|
|
|
|
def did_reuse(self, buffer, reused_buffer):
|
|
# Check whether a given buffer was reused by a possible reuser in the wrapper codegen
|
|
# Can be consulted from inside ir codegen, e.g. to determine whether a copy is needed
|
|
return (
|
|
buffer.get_name() in self.reuses
|
|
and self.reuses[buffer.get_name()] == reused_buffer.get_name()
|
|
)
|
|
|
|
def codegen_inplace_reuse(self, input_buffer, output_buffer):
|
|
assert buffer_reuse_key(input_buffer) == buffer_reuse_key(output_buffer)
|
|
self.codegen_allocation(input_buffer)
|
|
self.freed.add(input_buffer.get_name())
|
|
self.allocated.add(output_buffer.get_name())
|
|
self.reuses[output_buffer.get_name()] = input_buffer.get_name()
|
|
self.writeline(ReuseLine(self, input_buffer, output_buffer))
|
|
|
|
|
|
class CppWrapperCodeGen(WrapperCodeGen):
|
|
"""
|
|
Generates cpp wrapper for running on CPU and calls cpp kernels
|
|
"""
|
|
|
|
def __init__(self):
|
|
super().__init__()
|
|
self.declare = "auto "
|
|
self.ending = ";"
|
|
self.open_bracket = "{"
|
|
self.closed_bracket = "}"
|
|
self.comment = "//"
|
|
self.namespace = "at::"
|
|
self.none_str = "at::Tensor()"
|
|
self.extern_call_ops = set()
|
|
self.size = "sizes()"
|
|
self.stride = "strides()"
|
|
self.call_func_name = "inductor_entry_cpp"
|
|
self.cuda = False
|
|
self.supports_intermediate_hooks = False
|
|
|
|
def write_header(self):
|
|
if V.graph.aot_mode:
|
|
self.header.splice(
|
|
"""
|
|
/* AOTInductor generated code */
|
|
|
|
#include <ATen/ScalarOps.h>
|
|
"""
|
|
)
|
|
else:
|
|
self.header.splice(
|
|
"""
|
|
import torch
|
|
from torch.utils.cpp_extension import load_inline
|
|
|
|
cpp_wrapper_src = (
|
|
'''
|
|
"""
|
|
)
|
|
|
|
def mark_output_type(self):
|
|
# mark output type to unwrap tensor back to python scalar
|
|
from ..ir import ShapeAsConstantBuffer
|
|
|
|
output_is_tensor = dict()
|
|
for idx, x in enumerate(V.graph.graph_outputs):
|
|
if isinstance(x, ShapeAsConstantBuffer):
|
|
output_is_tensor[idx] = False
|
|
else:
|
|
output_is_tensor[idx] = True
|
|
|
|
self.output_is_tensor = output_is_tensor
|
|
|
|
def write_prefix(self):
|
|
return
|
|
|
|
def write_wrapper_decl(self):
|
|
inputs_len = len(V.graph.graph_inputs.keys())
|
|
self.prefix.splice(
|
|
f"""std::vector<at::Tensor> {self.call_func_name}(const std::vector<at::Tensor>& args) {{"""
|
|
)
|
|
with self.prefix.indent():
|
|
if inputs_len != 0:
|
|
for idx, input_key in enumerate(V.graph.graph_inputs.keys()):
|
|
# unwrap input tensor back to scalar
|
|
if isinstance(V.graph.graph_inputs[input_key], sympy.Expr):
|
|
from ..graph import may_get_constant_buffer_dtype
|
|
from .cpp import DTYPE_TO_CPP
|
|
|
|
dtype = may_get_constant_buffer_dtype(
|
|
V.graph.graph_inputs[input_key]
|
|
)
|
|
assert (
|
|
dtype is not None
|
|
), "Fails to get the dtype of the sympy.Expr"
|
|
cpp_dtype = DTYPE_TO_CPP[dtype]
|
|
self.prefix.writeline(
|
|
f"{cpp_dtype} {input_key} = args[{idx}].item<{cpp_dtype}>();"
|
|
)
|
|
else:
|
|
self.prefix.writeline(f"at::Tensor {input_key} = args[{idx}];")
|
|
|
|
self.codegen_inputs(self.prefix, V.graph.graph_inputs)
|
|
|
|
def generate(self):
|
|
self.write_wrapper_decl()
|
|
return super().generate()
|
|
|
|
def define_kernel(
|
|
self, name: str, kernel: str, metadata: Optional[str] = None, cuda=False
|
|
):
|
|
self.header.splice(f"\n{kernel}\n")
|
|
|
|
def generate_return(self, output_refs):
|
|
self.wrapper_call.writeline(f"return {{{', '.join(output_refs)}}};\n}}")
|
|
|
|
def generate_end(self, result):
|
|
if V.graph.aot_mode:
|
|
return
|
|
|
|
result.writeline("'''\n)")
|
|
# Generate load_inline to jit compile the generated cpp code and to use it in Python
|
|
shared = codecache.get_shared()
|
|
warning_all_flag = codecache.get_warning_all_flag()
|
|
cpp_flags = codecache.cpp_flags()
|
|
ipaths, lpaths, libs, macros = codecache.get_include_and_linking_paths(
|
|
vec_isa=codecache.pick_vec_isa(),
|
|
cuda=self.cuda,
|
|
)
|
|
optimization_flags = codecache.optimization_flags()
|
|
use_custom_generated_macros = codecache.use_custom_generated_macros()
|
|
|
|
extra_cflags = f"{cpp_flags} {optimization_flags} {warning_all_flag} {macros} {use_custom_generated_macros}"
|
|
extra_ldflags = f"{shared} {lpaths} {libs}"
|
|
extra_include_paths = f"{ipaths}"
|
|
|
|
# get the hash of the wrapper code to name the extension
|
|
wrapper_call_hash = codecache.code_hash(self.wrapper_call.getvalue())
|
|
result.splice(
|
|
f"""
|
|
module = load_inline(
|
|
name='inline_extension_{wrapper_call_hash}',
|
|
cpp_sources=[cpp_wrapper_src],
|
|
functions=['{self.call_func_name}'],
|
|
extra_cflags=['{extra_cflags}'],
|
|
extra_ldflags=['{extra_ldflags}'],
|
|
extra_include_paths=['{extra_include_paths}'])
|
|
"""
|
|
)
|
|
|
|
# unwrap output tensor back to python scalar
|
|
if all(x for x in self.output_is_tensor.values()):
|
|
# If no ShapeAsConstantBuffer in the output, directly return the output as tensors
|
|
return_str = "return f(args_tensor)"
|
|
else:
|
|
outputs = [
|
|
f"outputs[{i}]" if self.output_is_tensor[i] else f"outputs[{i}].item()"
|
|
for i in range(len(V.graph.graph_outputs))
|
|
]
|
|
outputs_str = f"[{', '.join(outputs)}]"
|
|
return_str = f"""
|
|
outputs = f(args_tensor)
|
|
return {outputs_str}
|
|
"""
|
|
# Wrap the func to support setting result._boxed_call = True
|
|
result.splice(
|
|
f"""
|
|
def _wrap_func(f):
|
|
def g(args):
|
|
args_tensor = [arg if isinstance(arg, torch.Tensor) else torch.tensor(arg) for arg in args]
|
|
{return_str}
|
|
return g
|
|
call = _wrap_func(module.{self.call_func_name})
|
|
"""
|
|
)
|
|
|
|
def generate_extern_kernel_out(self, output_view, codegen_reference, args, kernel):
|
|
if output_view:
|
|
output_as_strided = f"{output_view.codegen_reference()}"
|
|
output_name = f"{output_view.get_name()}_as_strided"
|
|
self.writeline(f"auto {output_name} = {output_as_strided};")
|
|
|
|
args.insert(0, output_name)
|
|
else:
|
|
args.insert(0, f"{codegen_reference}")
|
|
self.writeline(self.wrap_kernel_call(kernel, args))
|
|
|
|
def add_benchmark_harness(self, output):
|
|
if V.graph.aot_mode:
|
|
return
|
|
super().add_benchmark_harness(output)
|
|
|
|
def codegen_sizevar(self, x: Expr) -> str:
|
|
from .cpp import cexpr
|
|
|
|
return cexpr(V.graph.sizevars.simplify(x))
|
|
|
|
def codegen_tuple_access(self, basename: str, index: str) -> str:
|
|
return f"std::get<{index}>({basename})"
|
|
|
|
def codegen_shape_tuple(self, shape: Tuple[Expr, ...]) -> str:
|
|
parts = list(map(self.codegen_sizevar, shape))
|
|
if len(parts) == 0:
|
|
return "{}"
|
|
if len(parts) == 1:
|
|
return f"{{{parts[0]}, }}"
|
|
return f"{{{', '.join(parts)}}}"
|
|
|
|
def make_buffer_free(self, buffer):
|
|
return (
|
|
""
|
|
if isinstance(buffer.get_layout(), ir.MultiOutputLayout)
|
|
else f"{buffer.get_name()}.reset();"
|
|
)
|
|
|
|
def generate_profiler_mark_wrapper_call(self, stack):
|
|
self.wrapper_call.writeline(
|
|
'RECORD_FUNCTION("inductor_wrapper_call", c10::ArrayRef<c10::IValue>({{}}));'
|
|
)
|
|
|
|
def codegen_device(self, device):
|
|
from .cpp import DEVICE_TO_ATEN
|
|
|
|
return (
|
|
f"at::device(c10::Device({DEVICE_TO_ATEN[device.type]}, {device.index}))"
|
|
if device.index is not None
|
|
else f"at::device({DEVICE_TO_ATEN[device.type]})"
|
|
)
|
|
|
|
def make_buffer_allocation(self, buffer):
|
|
from .cpp import DTYPE_TO_ATEN
|
|
|
|
# TODO: map layout here
|
|
device = buffer.get_device()
|
|
dtype = buffer.get_dtype()
|
|
shape = tuple(buffer.get_size())
|
|
stride = tuple(buffer.get_stride())
|
|
device_str = self.codegen_device
|
|
return (
|
|
f"{self.declare}{buffer.get_name()} = {self.namespace}empty_strided("
|
|
f"{self.codegen_shape_tuple(shape)}, "
|
|
f"{self.codegen_shape_tuple(stride)}, "
|
|
f"{self.codegen_device(device)}"
|
|
f".dtype({DTYPE_TO_ATEN[dtype]})){self.ending}"
|
|
)
|
|
|
|
def generate_extern_kernel_alloc_and_find_schema_if_needed(
|
|
self,
|
|
name,
|
|
kernel,
|
|
codegen_args,
|
|
cpp_op_schema,
|
|
cpp_kernel_key,
|
|
cpp_kernel_overload_name="",
|
|
):
|
|
if cpp_kernel_key not in self.extern_call_ops:
|
|
self.writeline(
|
|
f"""
|
|
static auto op_{cpp_kernel_key} =
|
|
c10::Dispatcher::singleton()
|
|
.findSchemaOrThrow(
|
|
\"{kernel}\",
|
|
\"{cpp_kernel_overload_name}\")
|
|
.typed<{cpp_op_schema}>();
|
|
"""
|
|
)
|
|
self.extern_call_ops.add(cpp_kernel_key)
|
|
|
|
self.writeline(
|
|
f"auto {name} = op_{cpp_kernel_key}.call({', '.join(codegen_args)});"
|
|
)
|
|
|
|
def val_to_str(self, val):
|
|
from .cpp import DTYPE_TO_ATEN
|
|
|
|
if val is None:
|
|
return self.none_str
|
|
elif isinstance(val, bool):
|
|
return "true" if val else "false"
|
|
elif isinstance(val, str):
|
|
return f'"{val}"'
|
|
elif isinstance(val, torch.device):
|
|
return self.codegen_device(val)
|
|
elif isinstance(val, torch.dtype):
|
|
return DTYPE_TO_ATEN[val]
|
|
elif isinstance(val, (list, tuple)):
|
|
return f"{{{', '.join(list(map(self.val_to_str, val)))}}}"
|
|
else:
|
|
return repr(val)
|
|
|
|
|
|
class CudaWrapperCodeGen(CppWrapperCodeGen):
|
|
"""
|
|
Generates cpp wrapper for running on GPU and calls CUDA kernels
|
|
"""
|
|
|
|
def __init__(self):
|
|
super().__init__()
|
|
self.kernel_callsite_id = count()
|
|
self.arg_var_id = count()
|
|
self.cuda = True
|
|
|
|
def write_header(self):
|
|
super().write_header()
|
|
self.prefix.splice(
|
|
"""
|
|
#include <c10/util/Exception.h>
|
|
#include <c10/cuda/CUDAGuard.h>
|
|
|
|
#define AT_CUDA_DRIVER_CHECK_OVERRIDE(EXPR) \\
|
|
do { \\
|
|
CUresult __err = EXPR; \\
|
|
if (__err != CUDA_SUCCESS) { \\
|
|
AT_ERROR("CUDA driver error: ", static_cast<int>(__err)); \\
|
|
} \\
|
|
} while (0)
|
|
|
|
static inline CUfunction loadKernel(const std::string &filePath,
|
|
const std::string &funcName) {
|
|
CUmodule mod;
|
|
CUfunction func;
|
|
AT_CUDA_DRIVER_CHECK_OVERRIDE(cuModuleLoad(&mod, filePath.c_str()));
|
|
AT_CUDA_DRIVER_CHECK_OVERRIDE(cuModuleGetFunction(&func, mod, funcName.c_str()));
|
|
return func;
|
|
}
|
|
|
|
static inline void launchKernel(
|
|
CUfunction func,
|
|
int gridX,
|
|
int gridY,
|
|
int gridZ,
|
|
int numWraps,
|
|
int sharedMemBytes,
|
|
void* args[],
|
|
int device_index) {
|
|
AT_CUDA_DRIVER_CHECK_OVERRIDE(cuLaunchKernel(
|
|
func, gridX, gridY, gridZ, 32*numWraps, 1, 1, sharedMemBytes,
|
|
at::cuda::getCurrentCUDAStream(device_index), args, nullptr));
|
|
}
|
|
"""
|
|
)
|
|
|
|
def define_kernel(
|
|
self, name: str, kernel: str, metadata: Optional[str] = None, cuda=True
|
|
):
|
|
if not cuda:
|
|
return super().define_kernel(name, kernel, metadata, cuda)
|
|
|
|
def generate(self):
|
|
self.prefix.writeline("\n")
|
|
for kernel in self.src_to_kernel.values():
|
|
self.prefix.writeline(f"static CUfunction {kernel} = nullptr;")
|
|
self.prefix.writeline("\n")
|
|
return super().generate()
|
|
|
|
def generate_load_kernel(self, name, params):
|
|
mangled_name = params.get("mangled_name", None)
|
|
assert mangled_name is not None, "missing mangled_name"
|
|
cubin_path = params.get("cubin_path", None)
|
|
assert os.path.exists(
|
|
cubin_path
|
|
), "cubin file should already exist at this moment"
|
|
|
|
self.writeline(f"if ({name} == nullptr) {{")
|
|
self.writeline(
|
|
f""" {name} = loadKernel("{cubin_path}", "{mangled_name}");"""
|
|
)
|
|
self.writeline("}")
|
|
|
|
def generate_args_decl(self, call_args):
|
|
# TODO: only works for constant now, need type info
|
|
new_args = []
|
|
for arg in call_args:
|
|
var_name = f"var_{next(self.arg_var_id)}"
|
|
if isinstance(
|
|
arg,
|
|
(
|
|
sympy.Integer,
|
|
sympy.Symbol,
|
|
torch._inductor.codegen.triton.SymbolicCallArg,
|
|
),
|
|
):
|
|
self.writeline(f"auto {var_name} = {arg};")
|
|
elif is_int(arg):
|
|
self.writeline(f"int {var_name} = {arg};")
|
|
elif is_float(arg):
|
|
self.writeline(f"float {var_name} = {arg};")
|
|
else:
|
|
self.writeline(
|
|
f"CUdeviceptr {var_name} = reinterpret_cast<CUdeviceptr>({arg}.data_ptr());"
|
|
)
|
|
new_args.append(f"&{var_name}")
|
|
|
|
return ", ".join(new_args)
|
|
|
|
def generate_kernel_call(
|
|
self, name, call_args, grid=None, device_index=None, cuda=True
|
|
):
|
|
if not cuda:
|
|
return super().generate_kernel_call(
|
|
name, call_args, grid, device_index, cuda
|
|
)
|
|
|
|
params = CudaKernelParamCache.get(self.kernel_to_hash.get(name, None))
|
|
assert (
|
|
params is not None
|
|
), "cuda kernel parameters should already exist at this moment"
|
|
|
|
self.generate_load_kernel(name, params)
|
|
|
|
call_args = self.generate_args_decl(call_args)
|
|
kernel_args_var = f"kernel_args_var_{next(self.kernel_callsite_id)}"
|
|
self.writeline(f"void* {kernel_args_var}[] = {{{call_args}}};")
|
|
self.writeline(
|
|
"launchKernel({}, {}, {}, {}, {}, {}, {}, {});".format(
|
|
name,
|
|
params["grid_x"],
|
|
params["grid_y"],
|
|
params["grid_z"],
|
|
params["num_warps"],
|
|
params["shared_mem"],
|
|
kernel_args_var,
|
|
device_index,
|
|
)
|
|
)
|