pytorch/torch/csrc/cuda/Module.cpp
Michael Wootton 67dcd62310 Don't split oversize cached blocks (#44742)
Summary:
Fixes https://github.com/pytorch/pytorch/issues/35901

This change is designed to prevent fragmentation in the Caching Allocator.  Permissive block splitting in the allocator allows very large blocks to be split into many pieces.  Once split too finely it is unlikely all pieces will be 'free' at that same time so the original allocation can never be returned.   Anecdotally, we've seen a model run out of memory failing to alloc a 50 MB block on a 32 GB card while the caching allocator is holding 13 GB of 'split free blocks'

Approach:

- Large blocks above a certain size are designated "oversize".  This limit is currently set 1 decade above large, 200 MB
- Oversize blocks can not be split
- Oversize blocks must closely match the requested size (e.g. a 200 MB request will match an existing 205 MB block, but not a 300 MB block)
- In lieu of splitting oversize blocks there is a mechanism to quickly free a single oversize block (to the system allocator) to allow an appropriate size block to be allocated.  This will be activated under memory pressure and will prevent _release_cached_blocks()_ from triggering

Initial performance tests show this is similar or quicker than the original strategy.  Additional tests are ongoing.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/44742

Reviewed By: ngimel

Differential Revision: D23752058

Pulled By: ezyang

fbshipit-source-id: ccb7c13e3cf8ef2707706726ac9aaac3a5e3d5c8
2021-04-14 03:04:41 -07:00

609 lines
21 KiB
C++

#include <array>
#include <unordered_map>
#include <thread>
#include <chrono>
#include <sstream>
#include <TH/TH.h>
#include <ATen/ATen.h>
#include <ATen/cuda/CUDAContext.h>
#include <ATen/CUDAGeneratorImpl.h>
#include <c10/cuda/CUDAFunctions.h>
#include <c10/cuda/CUDACachingAllocator.h>
#ifdef USE_NCCL
#include <torch/csrc/cuda/python_nccl.h>
#endif
#include <torch/csrc/cuda/THCP.h>
#include <torch/csrc/CudaIPCTypes.h>
#include <torch/csrc/utils/pybind.h>
#include <torch/csrc/utils/cuda_lazy_init.h>
#include <torch/csrc/utils/python_numbers.h>
#include <torch/csrc/utils/python_strings.h>
#include <torch/csrc/cuda/python_comm.h>
#include <torch/csrc/Generator.h>
#include <torch/csrc/python_headers.h>
#ifndef WIN32
#include <pthread.h>
#endif
using namespace torch;
THCState *state = nullptr;
static bool in_bad_fork = false; // True for children forked after cuda init
#ifndef WIN32
// Called in the forked child if cuda has already been initialized
static void forked_child() {
in_bad_fork = true;
torch::utils::set_run_yet_variable_to_false();
state = nullptr;
}
#endif
// Should be called before the first cuda call.
// Note: This is distinct from initExtension because a stub cuda implementation
// has some working functions (e.g. device_count) but cannot fully initialize.
static void poison_fork() {
#ifndef WIN32
static std::once_flag flag;
std::call_once(flag, []{ pthread_atfork(nullptr, nullptr, forked_child); });
#endif
}
////////////////////////////////////////////////////////////////////////////////
// CUDA management methods
////////////////////////////////////////////////////////////////////////////////
void THCPModule_setDevice(int device)
{
c10::cuda::set_device(static_cast<c10::DeviceIndex>(device));
}
PyObject * THCPModule_setDevice_wrap(PyObject *self, PyObject *arg)
{
HANDLE_TH_ERRORS
THPUtils_assert(THPUtils_checkLong(arg), "invalid argument to setDevice");
int64_t device = THPUtils_unpackLong(arg);
torch::utils::cuda_lazy_init();
THCPModule_setDevice(device);
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
PyObject * THCPModule_getDevice_wrap(PyObject *self, PyObject *noargs)
{
HANDLE_TH_ERRORS
torch::utils::cuda_lazy_init();
auto device = static_cast<int>(c10::cuda::current_device());
return THPUtils_packInt32(device);
END_HANDLE_TH_ERRORS
}
PyObject * THCPModule_canDeviceAccessPeer_wrap(PyObject *self, PyObject *args)
{
HANDLE_TH_ERRORS
PyObject* arg1 = nullptr;
PyObject* arg2 = nullptr;
if(!PyArg_ParseTuple(args, "OO", &arg1, &arg2)) {
THPUtils_invalidArguments(
args,
nullptr,
"can_device_peer_access",
1,
"(int device, int peer_device);");
return nullptr;
}
THPUtils_assert(THPUtils_checkLong(arg1), "invalid argument to canDeviceAccessPeer");
THPUtils_assert(THPUtils_checkLong(arg2), "invalid argument to canDeviceAccessPeer");
int64_t device = THPUtils_unpackLong(arg1);
int64_t peer_device = THPUtils_unpackLong(arg2);
torch::utils::cuda_lazy_init();
auto can_access = at::cuda::canDeviceAccessPeer(device, peer_device);
return PyBool_FromLong(can_access);
END_HANDLE_TH_ERRORS
}
PyObject * THCPModule_getDeviceCount_wrap(PyObject *self, PyObject *noargs)
{
HANDLE_TH_ERRORS
poison_fork();
return THPUtils_packUInt64(at::cuda::device_count());
END_HANDLE_TH_ERRORS
}
PyObject * THCPModule_getArchFlags(PyObject *self, PyObject *noargs)
{
HANDLE_TH_ERRORS
poison_fork();
#ifdef CUDA_ARCH_FLAGS
static const char* flags = C10_STRINGIZE(CUDA_ARCH_FLAGS);
return THPUtils_packString(flags);
#else
Py_RETURN_NONE;
#endif
END_HANDLE_TH_ERRORS
}
static PyObject * THCPModule_isInBadFork(PyObject *self, PyObject *noargs) {
HANDLE_TH_ERRORS
return PyBool_FromLong(in_bad_fork);
END_HANDLE_TH_ERRORS
}
PyObject * THCPModule_getCurrentStream_wrap(
PyObject * /* unused */, PyObject *device_index) {
HANDLE_TH_ERRORS
THPUtils_assert(
THPUtils_checkLong(device_index), "invalid argument to getCurrentStream");
int64_t device = THPUtils_unpackLong(device_index);
return PyLong_FromUnsignedLongLong(
at::cuda::getCurrentCUDAStream(device).pack());
END_HANDLE_TH_ERRORS
}
PyObject * THCPModule_getDefaultStream_wrap(
PyObject * /* unused */, PyObject *device_index) {
HANDLE_TH_ERRORS
THPUtils_assert(
THPUtils_checkLong(device_index), "invalid argument to getDefaultStream");
int64_t device = THPUtils_unpackLong(device_index);
return PyLong_FromUnsignedLongLong(
at::cuda::getDefaultCUDAStream(device).pack());
END_HANDLE_TH_ERRORS
}
PyObject * THCPModule_setStream_wrap(PyObject *self, PyObject *obj)
{
HANDLE_TH_ERRORS
THPUtils_assert(PyLong_Check(obj), "invalid stream");
uint64_t bits = PyLong_AsUnsignedLongLong(obj);
if (bits == static_cast<uint64_t>(-1) && PyErr_Occurred()) {
throw python_error();
}
auto stream = at::cuda::CUDAStream::unpack(bits);
auto device = static_cast<int>(c10::cuda::current_device());
if (device != stream.device_index()) {
THCPModule_setDevice(stream.device_index());
}
at::cuda::setCurrentCUDAStream(stream);
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
PyObject * THCPModule_getCompiledVersion(PyObject *self, PyObject *noargs)
{
return THPUtils_packInt64((int64_t) CUDA_VERSION);
}
PyObject * THCPModule_cudaHostAllocator(PyObject *_unused, PyObject *noargs)
{
HANDLE_TH_ERRORS
c10::Allocator* allocator = THCState_getCudaHostAllocator(state);
return PyLong_FromVoidPtr(allocator);
END_HANDLE_TH_ERRORS
}
PyObject * THCPModule_cudaCachingAllocator_raw_alloc(PyObject *_unused, PyObject *args){
HANDLE_TH_ERRORS
PyObject* size_o = nullptr;
PyObject* stream_o = nullptr;
if(!PyArg_ParseTuple(args, "OO", &size_o, &stream_o)) {
THPUtils_invalidArguments(
args,
nullptr,
"caching_allocator_alloc",
1,
"(ssize_t size, intptr_t stream);");
return nullptr;
}
ssize_t size = PyLong_AsSsize_t(size_o);
cudaStream_t stream = static_cast<cudaStream_t>(PyLong_AsVoidPtr(stream_o));
void* mem = c10::cuda::CUDACachingAllocator::raw_alloc_with_stream(size, stream);
return PyLong_FromVoidPtr(mem);
END_HANDLE_TH_ERRORS
}
PyObject * THCPModule_cudaCachingAllocator_raw_delete(PyObject *_unused, PyObject *obj){
HANDLE_TH_ERRORS
void* mem_ptr = PyLong_AsVoidPtr(obj);
c10::cuda::CUDACachingAllocator::raw_delete(mem_ptr);
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
PyObject * THCPModule_cudaSynchronize(PyObject *_unused, PyObject *noargs)
{
HANDLE_TH_ERRORS
c10::cuda::device_synchronize();
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
PyObject * THCPModule_cudaIPCCollect(PyObject *_unused, PyObject *noargs)
{
HANDLE_TH_ERRORS
torch::CudaIPCCollect();
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
PyObject * THCPModule_cudaSleep(PyObject *_unused, PyObject *cycles)
{
HANDLE_TH_ERRORS
THPUtils_assert(THPUtils_checkLong(cycles), "torch.cuda._sleep(): expected 'int'");
THC_sleep(LIBRARY_STATE THPUtils_unpackLong(cycles));
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
// We need to ensure that as long as a thread will NEVER loose the GIL as long as
// it holds the CUDA mutex. Otherwise another thread might be scheduled and try to
// e.g. allocate a new tensor which will cause a deadlock. It's enough to have a
// single global, because it can be only set once (cudaMutex is not recursive)
// by the thread that owns the mutex (obviously there can be only one such thread).
static PyGILState_STATE cudaMutexGILState;
PyObject * THCPModule_cudaLockMutex(PyObject *module, PyObject *noargs)
{
auto mutex = c10::cuda::CUDACachingAllocator::getFreeMutex();
// This has to be a busy loop because we **absolutely need to** hold the GIL
// or it's a recipe for a deadlock otherwise (if we let other Python threads
// run while we have the cudaMutex, but not the GIL, they might try to e.g.
// free a CUDA tensor and acquire the cudaMutex without giving up the GIL,
// because it happens deep within THC).
while (true) {
if (mutex->try_lock())
break;
{
pybind11::gil_scoped_release no_gil;
std::this_thread::sleep_for(std::chrono::microseconds(10));
}
}
cudaMutexGILState = PyGILState_Ensure();
Py_RETURN_NONE;
}
PyObject * THCPModule_cudaUnlockMutex(PyObject *module, PyObject *noargs)
{
auto mutex = c10::cuda::CUDACachingAllocator::getFreeMutex();
PyGILState_Release(cudaMutexGILState);
mutex->unlock();
Py_RETURN_NONE;
}
PyObject * THCPModule_hasPrimaryContext(PyObject *_unused, PyObject *arg)
{
HANDLE_TH_ERRORS
THPUtils_assert(THPUtils_checkLong(arg), "invalid argument to has_primary_context");
int64_t device_index = static_cast<int64_t>(THPUtils_unpackLong(arg));
if (at::detail::getCUDAHooks().hasPrimaryContext(device_index)) {
Py_RETURN_TRUE;
} else {
Py_RETURN_FALSE;
}
END_HANDLE_TH_ERRORS
}
PyObject * THCPModule_setMemoryFraction(PyObject *_unused, PyObject *args)
{
HANDLE_TH_ERRORS
PyObject* fraction_o = nullptr;
PyObject* device_o = nullptr;
if(!PyArg_ParseTuple(args, "OO", &fraction_o, &device_o)) {
THPUtils_invalidArguments(
args,
nullptr,
"set_memory_fraction",
1,
"(double fraction, int device);");
return nullptr;
}
double fraction = PyFloat_AsDouble(fraction_o);
int64_t device = PyLong_AsLongLong(device_o);
c10::cuda::CUDACachingAllocator::setMemoryFraction(fraction, device);
END_HANDLE_TH_ERRORS
Py_RETURN_NONE;
}
PyObject * THCPModule_emptyCache(PyObject *_unused, PyObject *noargs)
{
HANDLE_TH_ERRORS
c10::cuda::CUDACachingAllocator::emptyCache();
END_HANDLE_TH_ERRORS
Py_RETURN_NONE;
}
PyObject * THCPModule_memoryStats(PyObject *_unused, PyObject *arg)
{
HANDLE_TH_ERRORS
THPUtils_assert(THPUtils_checkLong(arg), "invalid argument to memory_allocated");
const int device = (int) THPUtils_unpackLong(arg);
using c10::cuda::CUDACachingAllocator::StatType;
using c10::cuda::CUDACachingAllocator::Stat;
using c10::cuda::CUDACachingAllocator::StatArray;
using c10::cuda::CUDACachingAllocator::DeviceStats;
const auto statToDict = [](const Stat& stat) {
py::dict dict;
dict["current"] = stat.current;
dict["peak"] = stat.peak;
dict["allocated"] = stat.allocated;
dict["freed"] = stat.freed;
return dict;
};
const auto statArrayToDict = [=](const StatArray& statArray) {
const std::array<const char*, static_cast<size_t>(StatType::NUM_TYPES)> statTypeNames = {
"all", "small_pool", "large_pool"
};
py::dict dict;
for (size_t i = 0; i < statTypeNames.size(); ++i) {
dict[statTypeNames[i]] = statToDict(statArray[i]);
}
return dict;
};
const DeviceStats stats = c10::cuda::CUDACachingAllocator::getDeviceStats(device);
py::dict result;
result["num_alloc_retries"] = stats.num_alloc_retries;
result["num_ooms"] = stats.num_ooms;
result["max_split_size"] = stats.max_split_size;
result["allocation"] = statArrayToDict(stats.allocation);
result["segment"] = statArrayToDict(stats.segment);
result["active"] = statArrayToDict(stats.active);
result["inactive_split"] = statArrayToDict(stats.inactive_split);
result["allocated_bytes"] = statArrayToDict(stats.allocated_bytes);
result["reserved_bytes"] = statArrayToDict(stats.reserved_bytes);
result["active_bytes"] = statArrayToDict(stats.active_bytes);
result["inactive_split_bytes"] = statArrayToDict(stats.inactive_split_bytes);
result["oversize_allocations"] = statToDict(stats.oversize_allocations);
result["oversize_segments"] = statToDict(stats.oversize_segments);
return result.release().ptr();
END_HANDLE_TH_ERRORS
}
PyObject * THCPModule_resetAccumulatedMemoryStats(PyObject *_unused, PyObject *arg)
{
HANDLE_TH_ERRORS
THPUtils_assert(THPUtils_checkLong(arg), "invalid argument to reset_accumulated_memory_stats");
const int device = (int) THPUtils_unpackLong(arg);
c10::cuda::CUDACachingAllocator::resetAccumulatedStats(device);
END_HANDLE_TH_ERRORS
Py_RETURN_NONE;
}
PyObject * THCPModule_resetPeakMemoryStats(PyObject *_unused, PyObject *arg)
{
HANDLE_TH_ERRORS
THPUtils_assert(THPUtils_checkLong(arg), "invalid argument to reset_peak_memory_stats");
const int device = (int) THPUtils_unpackLong(arg);
c10::cuda::CUDACachingAllocator::resetPeakStats(device);
END_HANDLE_TH_ERRORS
Py_RETURN_NONE;
}
PyObject * THCPModule_memorySnapshot(PyObject *_unused, PyObject *noargs)
{
HANDLE_TH_ERRORS
using c10::cuda::CUDACachingAllocator::SegmentInfo;
using c10::cuda::CUDACachingAllocator::BlockInfo;
const auto segmentInfoToDict = [](const SegmentInfo& segmentInfo) {
py::dict segmentDict;
segmentDict["device"] = segmentInfo.device;
segmentDict["address"] = segmentInfo.address;
segmentDict["total_size"] = segmentInfo.total_size;
segmentDict["allocated_size"] = segmentInfo.allocated_size;
segmentDict["active_size"] = segmentInfo.active_size;
segmentDict["segment_type"] = (segmentInfo.is_large ? "large" : "small");
py::list blocks;
for (const auto& blockInfo : segmentInfo.blocks) {
py::dict blockDict;
blockDict["size"] = blockInfo.size;
blockDict["state"] = (blockInfo.allocated ? "active_allocated" : (blockInfo.active ? "active_pending_free" : "inactive"));
blocks.append(blockDict);
}
segmentDict["blocks"] = blocks;
return segmentDict;
};
const std::vector<SegmentInfo>& snapshot = c10::cuda::CUDACachingAllocator::snapshot();
py::list result;
for (const auto& segmentInfo : snapshot) {
result.append(segmentInfoToDict(segmentInfo));
}
return result.release().ptr();
END_HANDLE_TH_ERRORS
}
////////////////////////////////////////////////////////////////////////////////
// Cuda module initialization
////////////////////////////////////////////////////////////////////////////////
static void registerCudaDeviceProperties(PyObject* module) {
// Add _cudaDevicePropertires class to torch._C
auto m = py::handle(module).cast<py::module>();
py::class_<cudaDeviceProp>(m, "_CudaDeviceProperties")
.def_readonly("name", &cudaDeviceProp::name)
.def_readonly("major", &cudaDeviceProp::major)
.def_readonly("minor", &cudaDeviceProp::minor)
.def_readonly("is_multi_gpu_board", &cudaDeviceProp::isMultiGpuBoard)
.def_readonly("is_integrated", &cudaDeviceProp::integrated)
.def_readonly("multi_processor_count", &cudaDeviceProp::multiProcessorCount)
.def_readonly("total_memory", &cudaDeviceProp::totalGlobalMem)
.def("__repr__", [](const cudaDeviceProp &prop) {
std::ostringstream stream;
stream << "_CudaDeviceProperties(name='" << prop.name << "', major=" << prop.major
<< ", minor=" << prop.minor << ", total_memory=" << prop.totalGlobalMem / (1024 * 1024)
<< "MB, multi_processor_count=" << prop.multiProcessorCount << ")";
return stream.str();
});
}
static void bindGetDeviceProperties(PyObject* module) {
// Add method to torch.cuda
auto m = py::handle(module).cast<py::module>();
m.def("_get_device_properties", [](int device) -> cudaDeviceProp * {
return at::cuda::getDeviceProperties(device);
}, py::return_value_policy::reference);
}
// Callback for python part. Used for additional initialization of python classes
static PyObject * THCPModule_initExtension(PyObject *self, PyObject *noargs)
{
#if C10_ASAN_ENABLED
TORCH_WARN(
"torch.cuda: your pytorch binary has address sanitizer (asan) built in, "
"asan is currently not compatible with torch.cuda module, "
"you might get unexpected behavior (eg. out of memory, crash, etc.), "
"please rebuild pytorch without asan if you need to use this module");
#endif
HANDLE_TH_ERRORS
TORCH_INTERNAL_ASSERT(!in_bad_fork); // Handled at python level
poison_fork();
state = at::globalContext().lazyInitCUDA();
auto m = THPObjectPtr(PyImport_ImportModule("torch.cuda"));
if (!m) throw python_error();
// Register Storage Python objects with DynamicTypes.cpp
THCPDoubleStorage_postInit(m);
THCPFloatStorage_postInit(m);
THCPHalfStorage_postInit(m);
THCPLongStorage_postInit(m);
THCPIntStorage_postInit(m);
THCPShortStorage_postInit(m);
THCPCharStorage_postInit(m);
THCPByteStorage_postInit(m);
THCPBoolStorage_postInit(m);
THCPBFloat16Storage_postInit(m);
THCPComplexDoubleStorage_postInit(m);
THCPComplexFloatStorage_postInit(m);
bool has_half = true;
auto set_module_attr = [&](const char* name, PyObject* v) {
// PyObject_SetAttrString doesn't steal reference. So no need to incref.
if (PyObject_SetAttrString(m, name, v) < 0) {
throw python_error();
}
};
set_module_attr("has_magma", at::hasMAGMA() ? Py_True : Py_False);
set_module_attr("has_half", has_half ? Py_True : Py_False);
auto _state_cdata = THPObjectPtr(PyLong_FromVoidPtr(state));
if (!_state_cdata) throw python_error();
set_module_attr("_state_cdata", _state_cdata.get());
auto num_gpus = c10::cuda::device_count();
auto default_cuda_generators = PyTuple_New(static_cast<Py_ssize_t>(num_gpus));
for(int i = 0; i < num_gpus; i++) {
auto gen = at::cuda::detail::getDefaultCUDAGenerator(i);
auto cast_gen = (THPGenerator*)THPGenerator_initDefaultGenerator(gen);
// This reference is meant to be given away, so no need to incref here.
PyTuple_SetItem(default_cuda_generators, i, (PyObject*)cast_gen);
}
set_module_attr("default_generators", default_cuda_generators);
bindGetDeviceProperties(m);
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
PyObject * THCPModule_getCurrentBlasHandle_wrap(PyObject *self, PyObject *noargs)
{
HANDLE_TH_ERRORS
cublasHandle_t handle = at::cuda::getCurrentCUDABlasHandle();
return PyLong_FromVoidPtr(handle);
END_HANDLE_TH_ERRORS
}
static struct PyMethodDef _THCPModule_methods[] = {
{"_cuda_init", THCPModule_initExtension, METH_NOARGS, nullptr},
{"_cuda_setDevice", THCPModule_setDevice_wrap, METH_O, nullptr},
{"_cuda_getDevice", THCPModule_getDevice_wrap, METH_NOARGS, nullptr},
{"_cuda_getDeviceCount", THCPModule_getDeviceCount_wrap, METH_NOARGS, nullptr},
{"_cuda_canDeviceAccessPeer", THCPModule_canDeviceAccessPeer_wrap, METH_VARARGS, nullptr},
{"_cuda_getArchFlags", THCPModule_getArchFlags, METH_NOARGS, nullptr},
{"_cuda_isInBadFork", THCPModule_isInBadFork, METH_NOARGS, nullptr},
{"_cuda_getCurrentStream",
THCPModule_getCurrentStream_wrap, METH_O, nullptr},
{"_cuda_getDefaultStream",
THCPModule_getDefaultStream_wrap, METH_O, nullptr},
{"_cuda_getCurrentBlasHandle", THCPModule_getCurrentBlasHandle_wrap, METH_NOARGS, nullptr},
{"_cuda_setStream", THCPModule_setStream_wrap, METH_O, nullptr},
{"_cuda_getCompiledVersion", THCPModule_getCompiledVersion, METH_NOARGS, nullptr},
{"_cuda_hasPrimaryContext", THCPModule_hasPrimaryContext, METH_O, nullptr},
{"_cuda_setMemoryFraction", THCPModule_setMemoryFraction, METH_VARARGS, nullptr},
{"_cuda_emptyCache", THCPModule_emptyCache, METH_NOARGS, nullptr},
{"_cuda_memoryStats", THCPModule_memoryStats, METH_O, nullptr},
{"_cuda_resetAccumulatedMemoryStats", THCPModule_resetAccumulatedMemoryStats, METH_O, nullptr},
{"_cuda_resetPeakMemoryStats", THCPModule_resetPeakMemoryStats, METH_O, nullptr},
{"_cuda_memorySnapshot", THCPModule_memorySnapshot, METH_NOARGS, nullptr},
{"_cuda_cudaHostAllocator", THCPModule_cudaHostAllocator, METH_NOARGS, nullptr},
{"_cuda_cudaCachingAllocator_raw_alloc", THCPModule_cudaCachingAllocator_raw_alloc, METH_VARARGS, nullptr},
{"_cuda_cudaCachingAllocator_raw_delete", THCPModule_cudaCachingAllocator_raw_delete, METH_O, nullptr},
{"_cuda_synchronize", THCPModule_cudaSynchronize, METH_NOARGS, nullptr},
{"_cuda_ipc_collect", THCPModule_cudaIPCCollect, METH_NOARGS, nullptr},
{"_cuda_sleep", THCPModule_cudaSleep, METH_O, nullptr},
{"_cuda_lock_mutex", THCPModule_cudaLockMutex, METH_NOARGS, nullptr},
{"_cuda_unlock_mutex", THCPModule_cudaUnlockMutex, METH_NOARGS, nullptr},
#ifdef USE_NCCL
{"_nccl_version", THCPModule_nccl_version, METH_NOARGS, nullptr},
{"_nccl_unique_id", THCPModule_nccl_unique_id, METH_NOARGS, nullptr},
{"_nccl_init_rank", THCPModule_nccl_init_rank, METH_VARARGS, nullptr},
{"_nccl_reduce", THCPModule_nccl_reduce, METH_VARARGS, nullptr},
{"_nccl_all_reduce", THCPModule_nccl_all_reduce, METH_VARARGS, nullptr},
{"_nccl_broadcast", THCPModule_nccl_broadcast, METH_VARARGS, nullptr},
{"_nccl_all_gather", THCPModule_nccl_all_gather, METH_VARARGS, nullptr},
{"_nccl_reduce_scatter", THCPModule_nccl_reduce_scatter, METH_VARARGS, nullptr},
#endif
{nullptr}
};
PyMethodDef* THCPModule_methods() {
return _THCPModule_methods;
}
namespace torch { namespace cuda {
namespace shared {
void initCudartBindings(PyObject* module);
void initNvtxBindings(PyObject* module);
#if defined(USE_CUDNN) || defined(__HIP_PLATFORM_HCC__)
void initCudnnBindings(PyObject* module);
#endif
} // namespace shared
void initModule(PyObject *module) {
python::initCommMethods(module);
// As weird as it seems, this file is also compiled for ROCm,
// so this condition might not always be true...
shared::initCudartBindings(module);
shared::initNvtxBindings(module);
#if defined(USE_CUDNN) || defined(__HIP_PLATFORM_HCC__)
shared::initCudnnBindings(module);
#endif
registerCudaDeviceProperties(module);
}
}}