mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-07 12:21:27 +01:00
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/20180 Adding ShufflenetV2 (by Ma et. al. 2018) to the caffe2's benchmark suite. To run, use: `buck run mode/opt caffe2/caffe2/python/examples:imagenet_trainer -- --train_data null --batch_size 128 --epoch_size 3200 --num_epochs 2 --num_gpus 2 --model shufflenet` Reviewed By: bddppq, xw285cornell Differential Revision: D15094282 fbshipit-source-id: 0e1ce9c5975868e917b0f179e2c5b15647a76b4e
62 lines
2.0 KiB
Python
62 lines
2.0 KiB
Python
from __future__ import absolute_import
|
|
from __future__ import division
|
|
from __future__ import print_function
|
|
from __future__ import unicode_literals
|
|
|
|
import numpy as np
|
|
|
|
import caffe2.python.models.resnet as resnet
|
|
import hypothesis.strategies as st
|
|
from hypothesis import given, settings
|
|
import caffe2.python.hypothesis_test_util as hu
|
|
import caffe2.python.models.imagenet_trainer_test_utils as utils
|
|
|
|
class ResnetMemongerTest(hu.HypothesisTestCase):
|
|
|
|
@given(with_shapes=st.booleans(), **hu.gcs_cpu_only)
|
|
@settings(max_examples=2, timeout=120)
|
|
def test_resnet_shared_grads(self, with_shapes, gc, dc):
|
|
results = utils.test_shared_grads(
|
|
with_shapes,
|
|
resnet.create_resnet50,
|
|
'gpu_0/conv1_w',
|
|
'gpu_0/last_out_L1000'
|
|
)
|
|
self.assertTrue(results[0][0] < results[0][1])
|
|
np.testing.assert_almost_equal(results[1][0], results[1][1])
|
|
np.testing.assert_almost_equal(results[2][0], results[2][1])
|
|
|
|
def test_resnet_forward_only(self):
|
|
results = utils.test_forward_only(
|
|
resnet.create_resnet50,
|
|
'gpu_0/last_out_L1000'
|
|
)
|
|
self.assertTrue(results[0][0] < results[0][1])
|
|
self.assertTrue(results[1] < 7 and results[1] > 0)
|
|
np.testing.assert_almost_equal(results[2][0], results[2][1])
|
|
|
|
def test_resnet_forward_only_fast_simplenet(self):
|
|
'''
|
|
Test C++ memonger that is only for simple nets
|
|
'''
|
|
results = utils.test_forward_only_fast_simplenet(
|
|
resnet.create_resnet50,
|
|
'gpu_0/last_out_L1000'
|
|
)
|
|
|
|
self.assertTrue(results[0][0] < results[0][1])
|
|
self.assertTrue(results[1] < 4 and results[1] > 0)
|
|
np.testing.assert_almost_equal(results[2][0], results[2][1])
|
|
|
|
|
|
if __name__ == "__main__":
|
|
import unittest
|
|
import random
|
|
random.seed(2603)
|
|
workspace.GlobalInit([
|
|
'caffe2',
|
|
'--caffe2_log_level=0',
|
|
'--caffe2_print_blob_sizes_at_exit=0',
|
|
'--caffe2_gpu_memory_tracking=1'])
|
|
unittest.main()
|