mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-07 12:21:27 +01:00
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/63094 This PR: - Moves `FileManager` and its dependencies (`assert_never` and other imports) to `utils.py`, and updates all of the call-sites with the fresh imports - Passes the list of NativeFunction objects into `gen_trace_type` directly, instead of requiring the function to regenerate it (we already have it) The purpose of the reshuffling is to avoid circular dependencies in the next PR, where I add codegen for the functionalization pass, which gets called from `gen.py` (but depends on some stuff from the autograd codegen - in partulcar, the list of view ops). Test Plan: Imported from OSS Reviewed By: albanD Differential Revision: D31942096 Pulled By: bdhirsh fbshipit-source-id: 36118facae61f25f8922bb43ad2818c80b53504e
120 lines
5.4 KiB
Python
120 lines
5.4 KiB
Python
from tools.codegen.model import (Argument, BaseTy, BaseType, ListType,
|
|
NativeFunctionsGroup, OptionalType,
|
|
SelfArgument, TensorOptionsArguments, Type)
|
|
|
|
from tools.codegen.api.types import (ArgName, BaseCType, Binding, ArrayRefCType,
|
|
ConstRefCType, OptionalCType, NamedCType,
|
|
tensorT, scalarT, intArrayRefT, dimnameListT,
|
|
optionalTensorRefT, optionalScalarRefT)
|
|
|
|
from tools.codegen.api import cpp
|
|
from tools.codegen.utils import assert_never
|
|
|
|
from typing import Union, List
|
|
|
|
# This file describes the translation of JIT schema to the structured functions API.
|
|
# This is similar to native API, but a number of historical problems with native
|
|
# API have been fixed.
|
|
|
|
# Translation of types occuring in JIT arguments to a C++ argument type.
|
|
# NB: For now, mutable doesn't do anything; but it could if we make
|
|
# some more nominal types
|
|
def argumenttype_type(t: Type, *, mutable: bool, binds: ArgName) -> NamedCType:
|
|
# If it's a value type, do the value type translation
|
|
r = cpp.valuetype_type(t, binds=binds)
|
|
if r is not None:
|
|
return r
|
|
|
|
if isinstance(t, BaseType):
|
|
if t.name == BaseTy.Tensor:
|
|
return NamedCType(binds, ConstRefCType(BaseCType(tensorT)))
|
|
elif t.name == BaseTy.Scalar:
|
|
return NamedCType(binds, ConstRefCType(BaseCType(scalarT)))
|
|
else:
|
|
raise AssertionError(f"base type should have been value type {t}")
|
|
elif isinstance(t, OptionalType):
|
|
if t.elem == BaseType(BaseTy.Tensor):
|
|
return NamedCType(binds, BaseCType(optionalTensorRefT))
|
|
elif t.elem == BaseType(BaseTy.Scalar):
|
|
return NamedCType(binds, BaseCType(optionalScalarRefT))
|
|
elem = argumenttype_type(t.elem, mutable=mutable, binds=binds)
|
|
return NamedCType(binds, OptionalCType(elem.type))
|
|
elif isinstance(t, ListType):
|
|
if t.elem == BaseType(BaseTy.Tensor):
|
|
raise AssertionError(
|
|
"list of tensor not supported by structured yet; to implement this "
|
|
"resolve torch::List issue, see "
|
|
"https://fb.workplace.com/groups/894363187646754/permalink/1149276442155426"
|
|
)
|
|
# TODO: delete these special cases; see tools.codegen.api.cpp--these
|
|
# must be changed in tandem, but there are problems; see
|
|
# https://github.com/pytorch/pytorch/pull/51485
|
|
elif str(t.elem) == 'int':
|
|
return NamedCType(binds, BaseCType(intArrayRefT))
|
|
elif str(t.elem) == 'Dimname':
|
|
return NamedCType(binds, BaseCType(dimnameListT))
|
|
elem = argumenttype_type(t.elem, mutable=mutable, binds=binds)
|
|
return NamedCType(binds, ArrayRefCType(elem.type))
|
|
else:
|
|
raise AssertionError(f"unrecognized type {repr(t)}")
|
|
|
|
def argument_type(a: Argument, *, binds: ArgName) -> NamedCType:
|
|
return argumenttype_type(a.type, mutable=a.is_write, binds=binds)
|
|
|
|
# returns_type intentionally omitted, because structured kernels never "return";
|
|
# instead, they always indirectly report their outputs (in the case of a meta
|
|
# function, by calling set_output; in the case of an impl function, by writing
|
|
# directly into the provided out argument).
|
|
|
|
# Structured kernels are never defaulted
|
|
def argument(a: Union[Argument, SelfArgument, TensorOptionsArguments]) -> List[Binding]:
|
|
if isinstance(a, Argument):
|
|
return [Binding(
|
|
nctype=argument_type(a, binds=a.name),
|
|
name=a.name,
|
|
default=None,
|
|
argument=a,
|
|
)]
|
|
elif isinstance(a, SelfArgument):
|
|
return argument(a.argument)
|
|
elif isinstance(a, TensorOptionsArguments):
|
|
raise AssertionError("structured kernels don't support TensorOptions yet")
|
|
else:
|
|
assert_never(a)
|
|
|
|
def impl_arguments(g: NativeFunctionsGroup) -> List[Binding]:
|
|
args: List[Union[Argument, TensorOptionsArguments, SelfArgument]] = []
|
|
|
|
if g.out.precomputed:
|
|
# A list of parameters for the impl function with
|
|
# certain parameters replaced with precomputed counterparts
|
|
# as specified in native_functions.yaml.
|
|
non_out_args_replaced: List[Union[Argument, TensorOptionsArguments, SelfArgument]] = []
|
|
|
|
for a in g.out.func.arguments.non_out:
|
|
if isinstance(a, Argument) and a.name in g.out.precomputed.replace:
|
|
# If a is in precompute.replace, append the parameters
|
|
# that should replace it onto non_out_args_replaced.
|
|
for replacement in g.out.precomputed.replace[a.name]:
|
|
non_out_args_replaced.append(replacement)
|
|
else:
|
|
# If not, push a as it is.
|
|
non_out_args_replaced.append(a)
|
|
|
|
args.extend(non_out_args_replaced)
|
|
else:
|
|
args.extend(g.out.func.arguments.non_out)
|
|
|
|
args.extend(g.out.func.arguments.out)
|
|
return [r for arg in args for r in argument(arg)]
|
|
|
|
def meta_arguments(g: NativeFunctionsGroup) -> List[Binding]:
|
|
args: List[Union[Argument, TensorOptionsArguments, SelfArgument]] = []
|
|
args.extend(g.functional.func.arguments.non_out)
|
|
return [r for arg in args for r in argument(arg)]
|
|
|
|
def out_arguments(g: NativeFunctionsGroup) -> List[Binding]:
|
|
args: List[Union[Argument, TensorOptionsArguments, SelfArgument]] = []
|
|
args.extend(g.out.func.arguments.out)
|
|
return [r for arg in args for r in argument(arg)]
|