mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-06 12:20:52 +01:00
This updates ruff to 0.285 which is faster, better, and have fixes a bunch of false negatives with regards to fstrings. I also enabled RUF017 which looks for accidental quadratic list summation. Luckily, seems like there are no instances of it in our codebase, so enabling it so that it stays like that. :) Pull Request resolved: https://github.com/pytorch/pytorch/pull/107519 Approved by: https://github.com/ezyang
682 lines
25 KiB
Python
682 lines
25 KiB
Python
"""
|
|
Utils shared by different modes of quantization (eager/graph)
|
|
"""
|
|
import functools
|
|
import warnings
|
|
from collections import OrderedDict
|
|
from inspect import getfullargspec, signature
|
|
from typing import Any, Callable, Dict, Optional, Tuple, Union
|
|
|
|
import torch
|
|
from torch.ao.quantization.quant_type import QuantType
|
|
from torch.fx import Node
|
|
from torch.nn.utils.parametrize import is_parametrized
|
|
|
|
NodePattern = Union[Tuple[Node, Node], Tuple[Node, Tuple[Node, Node]], Any]
|
|
NodePattern.__module__ = "torch.ao.quantization.utils"
|
|
|
|
# This is the Quantizer class instance from torch/quantization/fx/quantize.py.
|
|
# Define separately to prevent circular imports.
|
|
# TODO(future PR): improve this.
|
|
# make this public once fixed (can't be public as is because setting the module directly
|
|
# doesn't work)
|
|
QuantizerCls = Any
|
|
|
|
# Type for fusion patterns, it can be more complicated than the following actually,
|
|
# see pattern.md for docs
|
|
# TODO: not sure if typing supports recursive data types
|
|
Pattern = Union[
|
|
Callable, Tuple[Callable, Callable], Tuple[Callable, Tuple[Callable, Callable]], Any
|
|
]
|
|
Pattern.__module__ = "torch.ao.quantization.utils"
|
|
|
|
# TODO: maybe rename this to MatchInputNode
|
|
class MatchAllNode:
|
|
""" A node pattern that matches all nodes, used in defining
|
|
fusion patterns in FX Graph Mode Quantization
|
|
"""
|
|
pass
|
|
|
|
module_type_list = {
|
|
torch.nn.ReLU,
|
|
torch.nn.ReLU6,
|
|
torch.nn.AdaptiveAvgPool1d,
|
|
torch.nn.AdaptiveAvgPool2d,
|
|
torch.nn.AdaptiveAvgPool3d,
|
|
torch.nn.AvgPool1d,
|
|
torch.nn.AvgPool2d,
|
|
torch.nn.AvgPool3d,
|
|
torch.nn.MaxPool1d,
|
|
torch.nn.MaxPool2d,
|
|
torch.nn.MaxPool3d,
|
|
torch.nn.Identity,
|
|
torch.nn.Hardsigmoid,
|
|
torch.nn.Sigmoid,
|
|
torch.nn.Tanh,
|
|
}
|
|
func_list = {
|
|
torch.nn.functional.adaptive_avg_pool1d,
|
|
torch.nn.functional.adaptive_avg_pool2d,
|
|
torch.nn.functional.adaptive_avg_pool3d,
|
|
torch.nn.functional.elu,
|
|
torch.nn.functional.hardswish,
|
|
torch.nn.functional.instance_norm,
|
|
torch.nn.functional.layer_norm,
|
|
torch.nn.functional.leaky_relu,
|
|
torch.nn.functional.silu,
|
|
torch.nn.functional.mish,
|
|
torch.nn.functional.dropout,
|
|
torch.nn.functional.max_pool1d,
|
|
torch.nn.functional.max_pool2d,
|
|
torch.nn.functional.max_pool3d,
|
|
torch.nn.functional.relu,
|
|
torch.nn.functional.hardtanh,
|
|
torch.nn.functional.hardtanh_,
|
|
torch.nn.functional.hardsigmoid,
|
|
torch.nn.functional.sigmoid,
|
|
torch.transpose,
|
|
torch.repeat_interleave,
|
|
torch.sigmoid,
|
|
torch.squeeze,
|
|
torch.stack,
|
|
torch.sum,
|
|
torch.tanh,
|
|
torch.unsqueeze,
|
|
torch.cat,
|
|
}
|
|
method_list = {
|
|
torch.mean,
|
|
'relu',
|
|
'relu_',
|
|
'contiguous',
|
|
'detach',
|
|
'detach_',
|
|
'hardsigmoid',
|
|
'hardsigmoid_',
|
|
'permute',
|
|
'repeat',
|
|
'repeat_interleave',
|
|
'reshape',
|
|
'resize_',
|
|
'shape',
|
|
'sigmoid',
|
|
'sigmoid_',
|
|
'size',
|
|
'squeeze',
|
|
'squeeze_',
|
|
'tanh',
|
|
'tanh_',
|
|
'transpose',
|
|
'unsqueeze',
|
|
'unsqueeze_',
|
|
'view',
|
|
}
|
|
|
|
# TODO: not used now, remove
|
|
def check_node(node, modules):
|
|
# TODO: reuse is_fixed_qparam_node after we move this function to _lower_to_native_backend.py
|
|
is_call_function = node.op == "call_function" and node.target in func_list
|
|
is_call_method = node.op == "call_method" and node.target in method_list
|
|
is_call_module = node.op == "call_module" and type(modules[str(node.target)]) in module_type_list
|
|
return is_call_function, is_call_method, is_call_module
|
|
|
|
def get_combined_dict(default_dict, additional_dict):
|
|
d = default_dict.copy()
|
|
d.update(additional_dict)
|
|
return d
|
|
|
|
def is_per_tensor(qscheme):
|
|
return qscheme == torch.per_tensor_affine or \
|
|
qscheme == torch.per_tensor_symmetric
|
|
|
|
def is_per_channel(qscheme):
|
|
return qscheme in [torch.per_channel_affine,
|
|
torch.per_channel_affine_float_qparams,
|
|
torch.per_channel_symmetric]
|
|
|
|
def getattr_from_fqn(obj: Any, fqn: str) -> Any:
|
|
"""
|
|
Given an obj and a fqn such as "foo.bar.baz", returns gm.foo.bar.baz.
|
|
"""
|
|
return functools.reduce(getattr, fqn.split("."), obj)
|
|
|
|
def to_underlying_dtype(qdtype):
|
|
DTYPE_MAPPING = {
|
|
torch.quint8: torch.uint8,
|
|
torch.qint8: torch.int8,
|
|
torch.qint32: torch.int32,
|
|
torch.quint4x2: torch.uint8,
|
|
torch.quint2x4: torch.uint8,
|
|
}
|
|
assert qdtype in DTYPE_MAPPING, "Unsupported dtype: " + qdtype
|
|
return DTYPE_MAPPING[qdtype]
|
|
|
|
def get_qparam_dict(observer_or_fake_quant):
|
|
from torch.ao.quantization.observer import PlaceholderObserver
|
|
|
|
qscheme = getattr(observer_or_fake_quant, "qscheme", None)
|
|
dtype = observer_or_fake_quant.dtype
|
|
qparams = {"qscheme": qscheme, "dtype": dtype}
|
|
|
|
if not qscheme or isinstance(observer_or_fake_quant, PlaceholderObserver):
|
|
return {"qscheme": None, "dtype": dtype}
|
|
|
|
if is_per_tensor(qscheme):
|
|
qscheme = torch.per_tensor_affine
|
|
elif is_per_channel(qscheme):
|
|
# change symmetric to affine since we do not have symmetric
|
|
# quantized Tensor
|
|
if qscheme == torch.per_channel_symmetric:
|
|
qscheme = torch.per_channel_affine
|
|
qparams["axis"] = observer_or_fake_quant.ch_axis
|
|
else:
|
|
raise RuntimeError(f"Unrecognized qscheme: {qscheme}")
|
|
# update qscheme, since we don't have symmetric quant qscheme
|
|
# in quantized Tensor
|
|
qparams["qscheme"] = qscheme
|
|
|
|
scale, zero_point = observer_or_fake_quant.calculate_qparams()
|
|
qparams["scale"] = scale
|
|
qparams["zero_point"] = zero_point
|
|
|
|
if hasattr(observer_or_fake_quant, "quant_min"):
|
|
qparams["quant_min"] = observer_or_fake_quant.quant_min
|
|
if hasattr(observer_or_fake_quant, "quant_max"):
|
|
qparams["quant_max"] = observer_or_fake_quant.quant_max
|
|
|
|
return qparams
|
|
|
|
|
|
def get_swapped_custom_module_class(custom_module, custom_module_class_mapping, qconfig):
|
|
""" Get the observed/quantized custom module class that we need
|
|
to swap `custom_module` to
|
|
Input:
|
|
custom_module: input, can be an instance of either a float or observed custom module
|
|
custom_module_class_mapping: the float to observed or observed to quantized custom module class mapping
|
|
qconfig: qconfig configured for the custom module
|
|
|
|
Output:
|
|
corresponding observed/quantized custom module class for input custom module instance
|
|
"""
|
|
quant_type = get_quant_type(qconfig)
|
|
class_mapping = custom_module_class_mapping.get(quant_type, {})
|
|
assert type(custom_module) in class_mapping, "did not find corresponding observed " \
|
|
f"module class for {type(custom_module)} in mapping: {class_mapping}"
|
|
return class_mapping[type(custom_module)]
|
|
|
|
def activation_dtype(qconfig):
|
|
assert qconfig is not None
|
|
activation = qconfig.activation()
|
|
return activation.dtype
|
|
|
|
def weight_dtype(qconfig):
|
|
assert qconfig is not None
|
|
weight = qconfig.weight()
|
|
return weight.dtype
|
|
|
|
def activation_is_statically_quantized(qconfig):
|
|
""" Given a qconfig, decide if the activation needs to be
|
|
quantized or not, this includes quantizing to quint8, qint8 and qint32 and float16
|
|
"""
|
|
return (
|
|
activation_dtype(qconfig) in [torch.quint8, torch.qint8, torch.qint32, torch.float16]
|
|
and (not activation_is_dynamically_quantized(qconfig))
|
|
)
|
|
|
|
def activation_is_dynamically_quantized(qconfig):
|
|
""" Given a qconfig, decide if the activation needs to be
|
|
dynamically quantized or not, this includes dynamically quantizing to
|
|
quint8, qint8 and float16
|
|
"""
|
|
activation_dtype, _, activation_is_dynamic = \
|
|
get_qconfig_dtypes(qconfig)
|
|
return activation_is_dynamic
|
|
|
|
def activation_is_int8_quantized(qconfig):
|
|
""" Given a qconfig, decide if the activation needs to be
|
|
quantized to int8 or not, this includes quantizing to quint8, qint8
|
|
"""
|
|
return activation_dtype(qconfig) in [torch.quint8, torch.qint8]
|
|
|
|
def activation_is_int32_quantized(qconfig):
|
|
""" Given a qconfig, decide if the activation needs to be
|
|
quantized to int32 or not
|
|
"""
|
|
return activation_dtype(qconfig) == torch.qint32
|
|
|
|
def weight_is_quantized(qconfig):
|
|
""" Given a qconfig, decide if the weight needs to be
|
|
quantized or not
|
|
"""
|
|
return weight_dtype(qconfig) in [torch.quint8, torch.qint8, torch.float16, torch.quint4x2]
|
|
|
|
def weight_is_statically_quantized(qconfig):
|
|
""" Given a qconfig, decide if the weight needs to be statically
|
|
quantized or not
|
|
"""
|
|
return weight_dtype(qconfig) in [torch.quint8, torch.qint8]
|
|
|
|
def op_is_int8_dynamically_quantized(qconfig) -> bool:
|
|
""" Given a qconfig, returns True if this op is using int8 dynamic
|
|
quantization
|
|
"""
|
|
activation_dtype, weight_dtype, activation_is_dynamic = \
|
|
get_qconfig_dtypes(qconfig)
|
|
return (
|
|
activation_dtype is torch.quint8 and
|
|
# for now, the lines below assume fbgemm or qnnpack
|
|
weight_dtype is torch.qint8 and
|
|
activation_is_dynamic
|
|
)
|
|
|
|
def get_qconfig_dtypes(qconfig):
|
|
r""" returns the qconfig tuple for qconfig:
|
|
(activation_dtype, weight_dtype, activation_is_dynamic)
|
|
"""
|
|
assert qconfig is not None
|
|
activation = qconfig.activation()
|
|
weight = qconfig.weight()
|
|
act_is_dynamic = getattr(activation, "is_dynamic", False)
|
|
return (activation.dtype, weight.dtype, act_is_dynamic)
|
|
|
|
def get_quant_type(qconfig):
|
|
assert qconfig is not None
|
|
activation = qconfig.activation()
|
|
weight = qconfig.weight()
|
|
static_dtypes = [torch.quint8, torch.qint8, torch.quint4x2, torch.qint32]
|
|
if weight.dtype in static_dtypes:
|
|
if hasattr(activation, 'is_dynamic') and activation.is_dynamic:
|
|
return QuantType.DYNAMIC
|
|
elif activation.dtype in static_dtypes:
|
|
return QuantType.STATIC
|
|
else:
|
|
return QuantType.WEIGHT_ONLY
|
|
|
|
if weight.dtype == torch.float16:
|
|
if hasattr(activation, 'is_dynamic') and activation.is_dynamic:
|
|
return QuantType.DYNAMIC
|
|
elif activation.dtype == torch.float16:
|
|
return QuantType.STATIC
|
|
|
|
raise Exception(f"Unrecognized dtype combination in get_quant_type: activation({activation.dtype}),"
|
|
f"weight({weight.dtype})")
|
|
|
|
def check_min_max_valid(min_val: torch.Tensor, max_val: torch.Tensor) -> bool:
|
|
""" Checks if the given minimum and maximum values are valid, meaning that
|
|
they exist and the min value is less than the max value.
|
|
"""
|
|
if min_val.numel() == 0 or max_val.numel() == 0:
|
|
warnings.warn(
|
|
"must run observer before calling calculate_qparams. " +
|
|
"Returning default values."
|
|
)
|
|
return False
|
|
|
|
if min_val.dim() == 0 or max_val.dim() == 0:
|
|
if min_val == float("inf") and max_val == float("-inf"):
|
|
warnings.warn(
|
|
"must run observer before calling calculate_qparams. " +
|
|
"Returning default values."
|
|
)
|
|
|
|
return False
|
|
|
|
assert min_val <= max_val, f"min {min_val} should be less than max {max_val}"
|
|
else:
|
|
assert torch.all(
|
|
min_val <= max_val
|
|
), f"min {min_val} should be less than max {max_val}"
|
|
|
|
return True
|
|
|
|
|
|
def calculate_qmin_qmax(quant_min: int, quant_max: int, has_customized_qrange: bool, dtype: torch.dtype,
|
|
reduce_range: bool) -> Tuple[int, int]:
|
|
r"""Calculates actual qmin and qmax based on the quantization range,
|
|
observer datatype and if range is reduced.
|
|
"""
|
|
# TODO(jerryzh): Figure out why custom quant_min/quant_max are still adjusted.
|
|
if has_customized_qrange:
|
|
# This initialization here is to be resolve TorchScript compilation issues and allow
|
|
# using of refinement to decouple initial_qmin and initial_qmax from quantization range.
|
|
# The actual values of initial_qmin and initial_qmax will be reset below.
|
|
if dtype == torch.qint32:
|
|
initial_quant_min, initial_quant_max = 0, 2**32 - 1
|
|
else:
|
|
initial_quant_min, initial_quant_max = 0, 255
|
|
# The following assignment of self.qmin and self.qmax to the local variables and the if check refine the
|
|
# attribute from Optional valid integers for use, based on TorchScript's requirements.
|
|
custom_quant_min, custom_quant_max = quant_min, quant_max
|
|
if custom_quant_min is not None and custom_quant_max is not None:
|
|
initial_quant_min, initial_quant_max = (
|
|
custom_quant_min,
|
|
custom_quant_max,
|
|
)
|
|
|
|
qrange_len = initial_quant_max - initial_quant_min + 1
|
|
if dtype == torch.qint8:
|
|
assert (
|
|
0 < qrange_len <= 256
|
|
), "quantization range should be positive and not exceed the maximum bit range (=256)."
|
|
elif dtype == torch.qint32:
|
|
assert (
|
|
0 < qrange_len <= 2**32
|
|
), "quantization range should be positive and not exceed the maximum bit range (=4294967296)."
|
|
if reduce_range:
|
|
quant_min, quant_max = quant_min // 2, quant_max // 2
|
|
else:
|
|
# Fallback onto default 8-bit qmin and qmax calculation if dynamic range is not used.
|
|
if dtype == torch.qint8:
|
|
if reduce_range:
|
|
quant_min, quant_max = -64, 63
|
|
else:
|
|
quant_min, quant_max = -128, 127
|
|
elif dtype == torch.quint8:
|
|
if reduce_range:
|
|
quant_min, quant_max = 0, 127
|
|
else:
|
|
quant_min, quant_max = 0, 255
|
|
elif dtype == torch.qint32:
|
|
quant_min, quant_max = -1 * (2 ** 31), (2 ** 31) - 1
|
|
else:
|
|
quant_min, quant_max = 0, 15
|
|
return quant_min, quant_max
|
|
|
|
|
|
def _parent_name(target):
|
|
"""
|
|
Turn 'foo.bar' into ['foo', 'bar']
|
|
"""
|
|
r = target.rsplit('.', 1)
|
|
if len(r) == 1:
|
|
return '', r[0]
|
|
else:
|
|
return r[0], r[1]
|
|
|
|
def has_no_children_ignoring_parametrizations(module):
|
|
"""
|
|
Checks if module._modules is empty or
|
|
if module is a parametrization, checks that module._modules only has
|
|
the 'parametrizations' module
|
|
"""
|
|
if len(module._modules) == 0:
|
|
return True
|
|
elif is_parametrized(module):
|
|
return len(module._modules) == 1 and 'parametrizations' in module._modules
|
|
else:
|
|
return False
|
|
|
|
def _get_path_of_module(root: torch.nn.Module, submodule: torch.nn.Module) -> Optional[str]:
|
|
""" Get the path (fully qualified name) of a submodule
|
|
|
|
Example::
|
|
|
|
>> class M(torch.nn.Module):
|
|
def __init__(self):
|
|
self.linear = torch.nn.Linear(5, 5)
|
|
def forward(self, x):
|
|
return self.linear(x)
|
|
|
|
>> m = M()
|
|
>> l = m.linear
|
|
>> _get_path_of_module(m, l)
|
|
"linear"
|
|
"""
|
|
for n, p in root.named_modules():
|
|
if submodule is p:
|
|
return n
|
|
return None
|
|
|
|
def _get_signature_locals(f: Callable, loc: Dict[str, Any]) -> Dict[str, Any]:
|
|
""" Get local keyword arguments
|
|
|
|
Example::
|
|
|
|
>> def f(self, a, b=9):
|
|
pass
|
|
>> loc = {"a": 6, "c": 7}
|
|
>> _get_signature_locals(f, loc)
|
|
{"a": 6}
|
|
"""
|
|
return {k: v for k, v in loc.items() if k in signature(f).parameters}
|
|
|
|
def _get_default_kwargs(f: Callable) -> "OrderedDict[str, Any]":
|
|
""" Get all default keyword arguments from function signature
|
|
|
|
Example::
|
|
|
|
>> def f(self, a, b=9):
|
|
pass
|
|
>> _get_default_kwargs(f)
|
|
{"b": 9}
|
|
"""
|
|
kwargs = {}
|
|
for name, param in signature(f).parameters.items():
|
|
if param.default is not param.empty:
|
|
kwargs[name] = param.default
|
|
elif param.kind is param.VAR_POSITIONAL:
|
|
kwargs[name] = ()
|
|
elif param.kind is param.VAR_KEYWORD:
|
|
kwargs[name] = {}
|
|
return OrderedDict(kwargs)
|
|
|
|
def _normalize_kwargs(func: Callable, loc: Dict[str, Any]) -> "OrderedDict[str, Any]":
|
|
""" Given a function and local function arguments, normalize the keyword
|
|
arguments by filling in default arguments from function signature
|
|
|
|
Example::
|
|
|
|
>> def f(self, key1=3, key2=3):
|
|
pass
|
|
>> loc = {"key2": 6}
|
|
>> _normalize_kwargs(f, loc)
|
|
{"key1": 3, "key2": 6}
|
|
"""
|
|
default_kwargs = _get_default_kwargs(func)
|
|
local_kwargs = _get_signature_locals(func, loc)
|
|
normalized_kwargs = default_kwargs.copy()
|
|
for attr, val in local_kwargs.items():
|
|
if attr in normalized_kwargs:
|
|
# override the default keyword arguments
|
|
normalized_kwargs[attr] = val
|
|
return normalized_kwargs
|
|
|
|
def validate_qmin_qmax(quant_min: int, quant_max: int) -> None:
|
|
r"""Validates that the user-specified quantization range is properly initialized
|
|
and within the given bound supported by the observer dtype.
|
|
|
|
To accommodate lower-bit quantization with respect to the existing torch.qint8 and
|
|
torch.quint8 datatypes, the user can choose to use dynamic quantization range by passing
|
|
in a tuple of initial qmin and qmax values. One use case is these customized qmin and qmax
|
|
values are used to calculate static estimates of the scale and zero point for aggressive lower-bit
|
|
fake quantization. These estimates are compared against parameters learned through backpropagation.
|
|
The related literatures for scale and zero point via backpropagation are as follows:
|
|
|
|
Learned Step Size Quantization: https://openreview.net/pdf?id=rkgO66VKDS
|
|
Trained Quantization Thresholds: https://arxiv.org/pdf/1903.08066.pdf
|
|
"""
|
|
# The variable names are prefixed with "initial" because their values (qmin and qmax) might be adjusted
|
|
# based on whether quantization range is reduced and the datatype (signed/unsigned) used by the observer.
|
|
assert (
|
|
quant_min <= 0 <= quant_max
|
|
), "Used-specified quantization range must include 0."
|
|
assert (
|
|
quant_min < quant_max
|
|
), "qmin must be strictly less than qmax for user-specified quantization range."
|
|
|
|
|
|
# Functionally equivalent to '_calculate_qparams' in observer.py. Observers must be torchscriptable however and qscheme
|
|
# as far as I can tell is not allowed to passed as a parameter in torchscript functions. This makes refactoring observer
|
|
# to use this utility a massive pain and very gross. For now Im opting just to duplicate as this code seems unlikey to change
|
|
# (last update over 1 year ago) and when torchscript is fully deprecated we can refactor. TODO(jakeszwe, jerryzh168)
|
|
def determine_qparams(
|
|
min_val: torch.Tensor, max_val: torch.Tensor, quant_min: int, quant_max: int,
|
|
dtype: torch.dtype, eps: torch.Tensor, has_customized_qrange: bool,
|
|
qscheme: torch.qscheme = torch.per_tensor_affine) -> Tuple[torch.Tensor, torch.Tensor]:
|
|
r"""Calculates the quantization parameters, given min and max
|
|
value tensors. Works for both per tensor and per channel cases
|
|
|
|
Args:
|
|
min_val: Minimum values per channel
|
|
max_val: Maximum values per channel
|
|
|
|
Returns:
|
|
scales: Scales tensor of shape (#channels,)
|
|
zero_points: Zero points tensor of shape (#channels,)
|
|
"""
|
|
if not check_min_max_valid(min_val, max_val):
|
|
return torch.tensor([1.0], device=min_val.device.type), torch.tensor([0], device=min_val.device.type)
|
|
|
|
min_val_neg = torch.min(min_val, torch.zeros_like(min_val))
|
|
max_val_pos = torch.max(max_val, torch.zeros_like(max_val))
|
|
|
|
device = min_val_neg.device
|
|
scale = torch.ones(min_val_neg.size(), dtype=torch.double, device=device)
|
|
zero_point = torch.zeros(min_val_neg.size(), dtype=torch.int64, device=device)
|
|
|
|
if (
|
|
qscheme == torch.per_tensor_symmetric
|
|
or qscheme == torch.per_channel_symmetric
|
|
):
|
|
max_val_pos = torch.max(-min_val_neg, max_val_pos)
|
|
scale = max_val_pos / (float(quant_max - quant_min) / 2)
|
|
scale = torch.max(scale, eps)
|
|
if dtype == torch.uint8 or dtype == torch.quint8:
|
|
if has_customized_qrange:
|
|
# When customized quantization range is used, down-rounded midpoint of the range is chosen.
|
|
zero_point = zero_point.new_full(
|
|
zero_point.size(), (quant_min + quant_max) // 2
|
|
)
|
|
else:
|
|
zero_point = zero_point.new_full(zero_point.size(), 128)
|
|
elif qscheme == torch.per_channel_affine_float_qparams:
|
|
scale = (max_val - min_val) / float(quant_max - quant_min)
|
|
scale = torch.where(scale > eps, scale, torch.ones_like(scale))
|
|
# We use the quantize function
|
|
# xq = Round(Xf * inv_scale + zero_point),
|
|
# setting zero_point to (-1 * min *inv_scale) we get
|
|
# Xq = Round((Xf - min) * inv_scale)
|
|
zero_point = -1 * min_val / scale
|
|
else:
|
|
scale = (max_val_pos - min_val_neg) / float(quant_max - quant_min)
|
|
scale = torch.max(scale, eps)
|
|
zero_point = quant_min - torch.round(min_val_neg / scale).to(torch.int)
|
|
zero_point = torch.clamp(zero_point, quant_min, quant_max)
|
|
|
|
# For scalar values, cast them to Tensors of size 1 to keep the shape
|
|
# consistent with default values in FakeQuantize.
|
|
if len(scale.shape) == 0:
|
|
# TODO: switch to scale.item() after adding JIT support
|
|
scale = torch.tensor([float(scale)], dtype=scale.dtype, device=device)
|
|
if len(zero_point.shape) == 0:
|
|
# TODO: switch to zero_point.item() after adding JIT support
|
|
zero_point = torch.tensor(
|
|
[int(zero_point)], dtype=zero_point.dtype, device=device
|
|
)
|
|
if qscheme == torch.per_channel_affine_float_qparams:
|
|
zero_point = torch.tensor(
|
|
[float(zero_point)], dtype=zero_point.dtype, device=device
|
|
)
|
|
|
|
return scale.to(torch.double), zero_point.to(torch.int64)
|
|
|
|
def _get_num_pos_args(f: Callable) -> int:
|
|
""" Get number of positional args for a function
|
|
|
|
Example::
|
|
|
|
>> def f(self, key1=3, key2=3):
|
|
pass
|
|
>> _get_num_pos_args(f)
|
|
3
|
|
"""
|
|
return len(getfullargspec(f).args)
|
|
|
|
def get_fqn_to_example_inputs(
|
|
model: torch.nn.Module,
|
|
example_inputs: Tuple[Any, ...]
|
|
) -> Dict[str, Tuple[Any, ...]]:
|
|
""" Given a model and its example inputs, return a dictionary from
|
|
fully qualified name of submodules to example_inputs for that submodule,
|
|
e.g. {"linear1": (tensor1,), "linear2": (tensor2,), "sub": (tensor3,),
|
|
"sub.linear1": (tensor4,), ...}
|
|
|
|
Used to make quantizing submodules easier now that FX Graph Mode Quantization requires
|
|
example inputs.
|
|
|
|
Also works for keyword arguments with default values, we would flatten keyword
|
|
arguments as positional arguments and fill in the missing keyword args with default
|
|
values, e.g. if we have a forward function:
|
|
def forward(self, x, key1=3, key2=3):
|
|
...
|
|
|
|
and we call it with self.submodule(x, key2=6)
|
|
we'll get example_inputs: (x, 3, 6)
|
|
|
|
user can also override `key1` with positional arguments as well:
|
|
for self.submodule(x, 5, key2=6)
|
|
we'll get: (x, 5, 6)
|
|
|
|
variable positional arguments and variable positional keyword arguments in forward
|
|
function are not supported currently, so please make sure no submodules is using
|
|
them.
|
|
"""
|
|
root = model
|
|
fqn_to_example_inputs = {}
|
|
|
|
def _patched_module_call(self, *args, **kwargs):
|
|
submodule_example_inputs = list(args).copy()
|
|
normalized_kwargs = _normalize_kwargs(self.forward, kwargs)
|
|
# minus 1 to skipping counting `self`
|
|
num_args = _get_num_pos_args(self.forward) - 1
|
|
num_to_pop = num_args - len(submodule_example_inputs)
|
|
while num_to_pop and normalized_kwargs:
|
|
normalized_kwargs.popitem(last=False)
|
|
num_to_pop -= 1
|
|
submodule_example_inputs.extend(normalized_kwargs.values())
|
|
submodule_example_inputs_tuple = tuple(submodule_example_inputs)
|
|
fqn = _get_path_of_module(root, self)
|
|
if fqn is not None:
|
|
fqn_to_example_inputs[fqn] = submodule_example_inputs_tuple
|
|
return orig_module_call(self, *args, **kwargs)
|
|
|
|
orig_module_call = torch.nn.Module.__call__
|
|
torch.nn.Module.__call__ = _patched_module_call
|
|
try:
|
|
model(*example_inputs)
|
|
finally:
|
|
# restore the module call even if there is an exception
|
|
torch.nn.Module.__call__ = orig_module_call
|
|
return fqn_to_example_inputs
|
|
|
|
__all__ = [
|
|
"NodePattern",
|
|
"Pattern",
|
|
"MatchAllNode",
|
|
"check_node",
|
|
"get_combined_dict",
|
|
"is_per_tensor",
|
|
"is_per_channel",
|
|
"getattr_from_fqn",
|
|
"get_qparam_dict",
|
|
"get_swapped_custom_module_class",
|
|
"activation_dtype",
|
|
"weight_dtype",
|
|
"activation_is_statically_quantized",
|
|
"activation_is_dynamically_quantized",
|
|
"activation_is_int8_quantized",
|
|
"activation_is_int32_quantized",
|
|
"weight_is_quantized",
|
|
"weight_is_statically_quantized",
|
|
"op_is_int8_dynamically_quantized",
|
|
"get_qconfig_dtypes",
|
|
"get_quant_type",
|
|
"check_min_max_valid",
|
|
"calculate_qmin_qmax",
|
|
"has_no_children_ignoring_parametrizations",
|
|
"get_fqn_to_example_inputs",
|
|
"to_underlying_dtype",
|
|
"determine_qparams",
|
|
"validate_qmin_qmax",
|
|
]
|