pytorch/test/cpp/api
Edward Yang 65bb34d885 Remove TensorImpl::is_variable, deprecate Tensor::is_variable (#29653)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/29653

I didn't remove is_variable from Tensor for BC reasons, but I did
remove as many uses as I could from the codebase.
at::impl::variable_excluded_from_dispatch got moved to TensorBody.h
so that it's more widely accessible.

This diff is NOT semantics preserving.  Here are the major differences:

- In a number of native operator implementations, we tested that arguments
  are not variable.  I replaced these with asserts that variable is
  excluded from dispatch.  I actually don't think these asserts are really
  necessary now (they should certainly be true, but it's hard to get
  it wrong), but I've kept them for old time's sake.  At least, they'll detect
  if you call these functions before you've processed variable (indicating
  a bug in your kernel.)

- There are a number of places where we do a per-tensor test for being a
  variable, for better error reporting when someone commits Tensor/Variable
  confusion.  Although these tests are substantively the same as the
  tests above, in these cases I decided to *delete* the test entirely.
  The reasoning is that in these cases, we didn't really care about
  dispatch (also, see above; I'm not too sure we really need the dispatch
  asserts), we cared about Tensor/Variable confusion.  Since Tensor/Variable
  confusion is impossible now, we don't need the tests.  One of the key
  factors which pushed me one way or another was whether or not a function
  was doing per-tensor validation; if I kept the assert in such functions,
  I'd repeatedly access the TLS.  Even if we want to bring back the asserts,
  they would have to go somewhere else.

  Another similar idiom is the number of places we do !x.defined() ||
  x.is_variable(); I treated this equivalently.

- nuclear_norm's computation of compute_uv is a bit weird, but I think
  it's OK to just delete the is_variable case (I *suspect* that it is
  always the case that self.is_variable(), but it doesn't really matter.)

Signed-off-by: Edward Z. Yang <ezyang@fb.com>

Test Plan: Imported from OSS

Differential Revision: D18496168

Pulled By: ezyang

fbshipit-source-id: 5a1ded931e0c10a6b758ba64a8380d34110e0c3e
2019-11-14 11:41:02 -08:00
..
any.cpp Separate libtorch tests from libtorch build. (#26927) 2019-10-02 08:04:52 -07:00
autograd.cpp Fix bugs in torch::tensor constructor (#28523) 2019-10-31 12:53:06 -07:00
CMakeLists.txt Use default dtype for torch::tensor(floating_point_values) and torch::tensor(empty braced-init-list) when dtype is not specified (#29632) 2019-11-13 15:17:11 -08:00
dataloader.cpp Fix bugs in torch::tensor constructor (#28523) 2019-10-31 12:53:06 -07:00
enum.cpp Use c10::variant-based enums for F::grid_sample 2019-11-12 16:05:26 -08:00
expanding-array.cpp Change C++ API test files to only include torch/torch.h (#27067) 2019-10-10 09:46:29 -07:00
functional.cpp Use F::*FuncOptions for embedding/embeddingbag functionals (#29673) 2019-11-13 18:47:22 -08:00
init_baseline.h Kaiming Initialization (#14718) 2019-02-15 14:58:22 -08:00
init_baseline.py Kaiming Initialization (#14718) 2019-02-15 14:58:22 -08:00
init.cpp Use default dtype for torch::tensor(floating_point_values) and torch::tensor(empty braced-init-list) when dtype is not specified (#29632) 2019-11-13 15:17:11 -08:00
integration.cpp Change C++ API test files to only include torch/torch.h (#27067) 2019-10-10 09:46:29 -07:00
jit.cpp Remove attempToRecoverType (#26767) 2019-10-16 11:07:13 -07:00
memory.cpp Hide c10::optional and nullopt in torch namespace (#12927) 2018-10-26 00:08:04 -07:00
misc.cpp Change C++ API test files to only include torch/torch.h (#27067) 2019-10-10 09:46:29 -07:00
module.cpp Allow passing undefined Tensor to Module::register_parameter (#27948) 2019-10-15 10:10:42 -07:00
modulelist.cpp C++/Python API parity for Conv{1,2,3}d layers, and add F::conv{1,2,3}d functionals (#28917) 2019-11-13 12:53:31 -08:00
modules.cpp C++/Python API parity for Conv{1,2,3}d layers, and add F::conv{1,2,3}d functionals (#28917) 2019-11-13 12:53:31 -08:00
nn_utils.cpp Add C++ API clip_grad_value_ for nn:utils (#28736) 2019-10-31 19:11:54 -07:00
optim_baseline.h Use torch:: instead of at:: in all C++ APIs (#13523) 2018-11-06 14:32:25 -08:00
optim_baseline.py Use torch:: instead of at:: in all C++ APIs (#13523) 2018-11-06 14:32:25 -08:00
optim.cpp Use default dtype for torch::tensor(floating_point_values) and torch::tensor(empty braced-init-list) when dtype is not specified (#29632) 2019-11-13 15:17:11 -08:00
ordered_dict.cpp Change C++ API test files to only include torch/torch.h (#27067) 2019-10-10 09:46:29 -07:00
parallel.cpp Fix bugs in torch::tensor constructor (#28523) 2019-10-31 12:53:06 -07:00
README.md Rewrite C++ API tests in gtest (#11953) 2018-09-21 21:28:16 -07:00
rnn.cpp Change C++ API test files to only include torch/torch.h (#27067) 2019-10-10 09:46:29 -07:00
sequential.cpp C++/Python API parity for Conv{1,2,3}d layers, and add F::conv{1,2,3}d functionals (#28917) 2019-11-13 12:53:31 -08:00
serialize.cpp Implement more of of the nn.Module API (#28828) 2019-11-06 22:58:25 -08:00
static.cpp Re-organize C++ API torch::nn folder structure (#26262) 2019-09-17 10:07:29 -07:00
support.cpp Use default dtype for torch::tensor(floating_point_values) and torch::tensor(empty braced-init-list) when dtype is not specified (#29632) 2019-11-13 15:17:11 -08:00
support.h Use default dtype for torch::tensor(floating_point_values) and torch::tensor(empty braced-init-list) when dtype is not specified (#29632) 2019-11-13 15:17:11 -08:00
tensor_cuda.cpp Deprecate tensor.data<T>(), and codemod tensor.data<T>() to tensor.data_ptr<T>() (#24886) 2019-08-21 20:11:24 -07:00
tensor_options_cuda.cpp Rename getNonVariableDeprecatedTypeProperties to getDeprecatedTypeProperties (#29203) 2019-11-13 07:43:32 -08:00
tensor_options.cpp Use default dtype for torch::tensor(floating_point_values) and torch::tensor(empty braced-init-list) when dtype is not specified (#29632) 2019-11-13 15:17:11 -08:00
tensor.cpp Remove TensorImpl::is_variable, deprecate Tensor::is_variable (#29653) 2019-11-14 11:41:02 -08:00
torch_include.cpp Relax set_num_threads restriction in parallel native case (#27947) 2019-10-16 21:53:36 -07:00

C++ Frontend Tests

In this folder live the tests for PyTorch's C++ Frontend. They use the GoogleTest test framework.

CUDA Tests

To make a test runnable only on platforms with CUDA, you should suffix your test with _CUDA, e.g.

TEST(MyTestSuite, MyTestCase_CUDA) { }

To make it runnable only on platforms with at least two CUDA machines, suffix it with _MultiCUDA instead of _CUDA, e.g.

TEST(MyTestSuite, MyTestCase_MultiCUDA) { }

There is logic in main.cpp that detects the availability and number of CUDA devices and supplies the appropriate negative filters to GoogleTest.

Integration Tests

Integration tests use the MNIST dataset. You must download it by running the following command from the PyTorch root folder:

$ python tools/download_mnist.py -d test/cpp/api/mnist

The required paths will be referenced as test/cpp/api/mnist/... in the test code, so you must run the integration tests from the PyTorch root folder.