pytorch/torch/distributed/_shard/api.py
Pritam Damania 64670e414e [reland] Create torch.distributed._shard package. (#72141)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/72141

We have many sharding components currently:
torch.distributed._sharded_tensor, torch.distributed._sharding_spec,
torch.distributed._sharded_optimizer and more coming.

As a result, organizing all of this under the `torch.distributed._shard`
package. For BC reasons, I'm still keeping the old packages and have them just
reference the new package.
ghstack-source-id: 148150861
ghstack-source-id: 148150861

Test Plan: waitforbuildbot

Reviewed By: fduwjj

Differential Revision: D33904585

fbshipit-source-id: 057e847eb7521b536a3ee4e0f94871aacc752062
(cherry picked from commit 29a70dd7af)
2022-02-02 06:58:20 +00:00

146 lines
5.8 KiB
Python

import copy
import torch
import torch.distributed as dist
from torch.distributed import distributed_c10d
from .sharding_spec import (
ChunkShardingSpec,
ShardingSpec,
)
from torch.distributed._shard.sharding_spec._internals import (
get_chunked_dim_size,
get_split_size,
)
from torch.distributed._shard.sharded_tensor import (
Shard,
ShardMetadata,
ShardedTensor,
)
def shard_parameter(
module: torch.nn.Module,
param_name: str,
sharding_spec: ShardingSpec,
src_rank=0,
process_group=None):
"""
Given a :class:`torch.nn.Module`, a ``param_name`` for a parameter in that
module, it shards that parameter according to the provided
``sharding_spec``. ``src_rank`` denotes the source rank which would be
used as the ground truth of the data which would be scattered as shards
across the rest of the ranks.
This method replaces ``module.param_name`` with a
:class:`torch.distributed._shard.sharded_tensor.ShardedTensor`
Args:
module (:class:`torch.nn.Module`): Module whose parameter needs to be sharded.
param_name (str): Name of the parameter of ``module`` that needs to be sharded.
sharding_spec (:class:`torch.distributed._shard.sharding_spec.ShardingSpec`): The specification
describing how to shard the Tensor.
Keyword args:
src_rank (int, optional): The source rank which is used as the ground truth of
the data for the parameter that would be sharded and scattered
across the rest of the ranks.
Default: 0.
process_group (ProcessGroup, optional): The process group to work on. If None,
the default process group will be used.
.. warning::
Only :class:`torch.distributed._shard.sharding_spec.ShardingSpec` is
currently supported as the ``sharding_spec``.
"""
# Perform some validation first.
if not isinstance(sharding_spec, ChunkShardingSpec):
raise ValueError('Only ChunkShardingspec is supported.')
if not hasattr(module, param_name):
raise ValueError(f'module: {module} does not have parameter with name: {param_name}')
tensor = getattr(module, param_name)
if not isinstance(tensor, torch.Tensor):
raise ValueError(f'Expected {type(module).__name__}.{param_name} to be a Tensor, but found {type(tensor).__name__}')
if not tensor.is_contiguous():
raise ValueError(f'param: {param_name} is not a contiguous Tensor')
pg = process_group if process_group is not None else distributed_c10d._get_default_group()
world_size = dist.get_world_size(pg)
rank = dist.get_rank(pg)
# Validate src_rank and sharding_spec are same across all ranks.
gathered_list = [None] * world_size
dist.all_gather_object(gathered_list, (src_rank, sharding_spec), group=pg)
for idx, entry in enumerate(gathered_list):
if src_rank != entry[0]: # type: ignore[index]
raise ValueError(
f'src_rank={src_rank} on rank: {rank} does not ' # type: ignore[index]
f'match with src_rank={entry[0]} on rank: {idx}')
if sharding_spec != entry[1]: # type: ignore[index]
raise ValueError(
f'sharding_spec={sharding_spec} on rank: {rank} does not ' # type: ignore[index]
f'match with sharding_spec={entry[1]} on rank: {idx}')
# Rearrange chunks according to placement.
local_metadata = None
current_offsets = [0] * len(tensor.size())
shards_metadata = []
sharding_dim_size = tensor.size(sharding_spec.dim) # type: ignore[arg-type]
split_size = get_split_size(sharding_dim_size, world_size)
tensor_sizes = list(tensor.size())
for idx, placement in enumerate(sharding_spec.placements):
chunked_dim_size = get_chunked_dim_size(sharding_dim_size, split_size, idx)
shard_size = copy.deepcopy(tensor_sizes)
shard_size[sharding_spec.dim] = chunked_dim_size # type: ignore[index]
shard_metadata = ShardMetadata(
shard_offsets=copy.deepcopy(current_offsets),
shard_sizes=shard_size,
placement=placement,
)
shards_metadata.append(shard_metadata)
if rank == placement.rank(): # type: ignore[union-attr]
local_metadata = shard_metadata
current_offsets[sharding_spec.dim] += chunked_dim_size # type: ignore[index]
# Scatter the shards (use broadcast since NCCL doesn't support scatter, this is very inefficient).
dist.broadcast(tensor, src=src_rank, group=pg)
# Reshape to get shard for this rank and we don't want autograd
# recording here for the narrow op and 'local_shard' should be a
# leaf variable in the autograd graph.
local_shard = tensor.narrow(
sharding_spec.dim, # type: ignore[arg-type]
local_metadata.shard_offsets[sharding_spec.dim], # type: ignore[union-attr, arg-type, index]
local_metadata.shard_sizes[sharding_spec.dim], # type: ignore[union-attr, index]
).clone().detach().contiguous()
# Sync requires_grad to local_shard.
local_shard.requires_grad = tensor.requires_grad
# Create ShardedTensor based on local shards.
local_shards = [
Shard(
tensor=local_shard,
metadata=local_metadata, # type: ignore[arg-type]
)
]
st = ShardedTensor._init_from_local_shards(local_shards, tensor.size(), process_group=pg)
# Manually set sharding_spec
st._sharding_spec = sharding_spec
# Replace param with ShardedTensor.
# Need to delete the attribute first since param_name might be
# torch.nn.Parameter and can't be replaced with ShardedTensor which is
# not torch.nn.Parameter.
delattr(module, param_name)
# Now we can set the attribute appropriately.
setattr(module, param_name, st)