pytorch/caffe2/core/blob_serialization.cc
2016-07-21 10:16:42 -07:00

87 lines
2.6 KiB
C++

#include "caffe2/core/blob_serialization.h"
#include <sstream>
#include <mutex>
#include "caffe2/core/blob.h"
CAFFE2_DEFINE_int(
caffe2_tensor_chunk_size,
1000000,
"Chunk size to split tensor data into");
namespace caffe2 {
// The blob serialization member function implementation.
void Blob::Serialize(
const string& name,
BlobSerializerBase::SerializationAcceptor acceptor) const {
std::unique_ptr<BlobSerializerBase> serializer(CreateSerializer(meta_.id()));
serializer->Serialize(*this, name, acceptor);
}
// The blob serialization member function implementation.
std::string Blob::Serialize(const string& name) const {
std::stringstream data;
std::mutex mutex;
BlobSerializerBase::SerializationAcceptor acceptor =
[&data, &mutex](const std::string& name, const std::string& blob) {
std::lock_guard<std::mutex> guard(mutex);
data << blob;
};
this->Serialize(name, acceptor);
return data.str();
}
// Specialization for StoreDeviceDetail for CPU - nothing needs to be done.
template <>
void TensorSerializer<CPUContext>::StoreDeviceDetail(
const Tensor<CPUContext>& input, TensorProto* proto) {}
// The actual serialization registry objects.
CAFFE_DEFINE_TYPED_REGISTRY(
BlobSerializerRegistry,
CaffeTypeId,
BlobSerializerBase);
CAFFE_DEFINE_REGISTRY(BlobDeserializerRegistry, BlobDeserializerBase);
bool Blob::Deserialize(const string& content) {
BlobProto blob_proto;
if (!blob_proto.ParseFromString(content)) {
LOG(ERROR) << "Cannot parse content into a BlobProto.";
return false;
}
return Deserialize(blob_proto);
}
bool Blob::Deserialize(const BlobProto& blob_proto) {
if (blob_proto.has_tensor()) {
// This is a tensor object. Depending on the device type, we will
// use the corresponding TensorDeserializer.
auto deserializer = CreateDeserializer(
"Tensor" +
DeviceType_Name(blob_proto.tensor().device_detail().device_type()));
// Tensor's deserializer should always be registered, but we will double
// check if it is not null anyway.
return CHECK_NOTNULL(deserializer.get())->Deserialize(blob_proto, this);
} else {
auto deserializer = CreateDeserializer(blob_proto.type());
if (!deserializer.get()) {
LOG(ERROR) << "No registered deserializer for type " << blob_proto.type();
return false;
}
return deserializer->Deserialize(blob_proto, this);
}
}
namespace {
// Serialize TensorCPU.
REGISTER_BLOB_SERIALIZER(
(TypeMeta::Id<TensorCPU>()),
TensorSerializer<CPUContext>);
REGISTER_BLOB_DESERIALIZER(TensorCPU, TensorDeserializer<CPUContext>);
} // namespace
} // namespace caffe2