mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-07 12:21:27 +01:00
This DIFF is to capture triton kernels in execution trace Pull Request resolved: https://github.com/pytorch/pytorch/pull/124775 Approved by: https://github.com/briancoutinho, https://github.com/aaronenyeshi
389 lines
14 KiB
Python
389 lines
14 KiB
Python
# Owner(s): ["oncall: profiler"]
|
|
|
|
# if tqdm is not shutdown properly, it will leave the monitor thread alive.
|
|
# This causes an issue in the multithreading test because we check all events
|
|
# in that test with their tids. The events that correspond to these lingering
|
|
# threads all have TID of (uint64_t)(-1) which is invalid.
|
|
# The work around is turnning off monitoring thread when tqdm is loaded.
|
|
# Since these are unit tests, it is safe to turn off monitor thread.
|
|
try:
|
|
import tqdm
|
|
|
|
tqdm.tqdm.monitor_interval = 0
|
|
except ImportError:
|
|
pass
|
|
|
|
import json
|
|
import sys
|
|
import tempfile
|
|
import unittest
|
|
from typing import Any, Dict, List
|
|
|
|
import torch
|
|
import torch.nn as nn
|
|
from torch import _dynamo as torchdynamo
|
|
from torch.autograd import (
|
|
_record_function_with_args_enter,
|
|
_record_function_with_args_exit,
|
|
)
|
|
from torch.profiler import (
|
|
ExecutionTraceObserver,
|
|
kineto_available,
|
|
profile,
|
|
record_function,
|
|
supported_activities,
|
|
)
|
|
|
|
from torch.testing._internal.common_cuda import TEST_CUDA
|
|
from torch.testing._internal.common_utils import (
|
|
IS_WINDOWS,
|
|
run_tests,
|
|
skipIfTorchDynamo,
|
|
TestCase,
|
|
)
|
|
|
|
from torch.utils._triton import has_triton
|
|
|
|
Json = Dict[str, Any]
|
|
|
|
|
|
class TestExecutionTrace(TestCase):
|
|
def payload(self, use_cuda=False):
|
|
u = torch.randn(3, 4, 5, requires_grad=True)
|
|
with record_function("## TEST 1 ##", "1, 2, 3"):
|
|
inf_val = float("inf")
|
|
neg_inf_val = float("-inf")
|
|
nan_val = float("nan")
|
|
rf_handle = _record_function_with_args_enter(
|
|
"## TEST 2 ##",
|
|
1,
|
|
False,
|
|
2.5,
|
|
[u, u],
|
|
(u, u),
|
|
"hello",
|
|
u,
|
|
inf_val,
|
|
neg_inf_val,
|
|
nan_val,
|
|
)
|
|
x = torch.randn(10, 10, requires_grad=True)
|
|
if use_cuda:
|
|
x = x.cuda()
|
|
y = torch.randn(10, 10, requires_grad=True)
|
|
if use_cuda:
|
|
y = y.cuda()
|
|
z = x + y + x * y + x * y
|
|
z.backward(z)
|
|
gelu = nn.GELU()
|
|
m = torch.randn(2)
|
|
_ = gelu(m)
|
|
if use_cuda:
|
|
z = z.cpu()
|
|
_record_function_with_args_exit(rf_handle)
|
|
|
|
def get_execution_trace_root(self, output_file_name) -> Json:
|
|
nodes = []
|
|
with open(output_file_name) as f:
|
|
et_graph = json.load(f)
|
|
assert "nodes" in et_graph
|
|
nodes = et_graph["nodes"]
|
|
return nodes
|
|
|
|
def get_execution_trace_rf_ids(self, nodes: List[Json]) -> List[int]:
|
|
"""Returns a sorted list of rf_id (record function ids) in execution trace"""
|
|
|
|
def get_rf_id(node):
|
|
attrs = node["attrs"]
|
|
for a in attrs:
|
|
if a["name"] == "rf_id":
|
|
return a["value"]
|
|
return None
|
|
|
|
rf_ids_ = (
|
|
get_rf_id(n)
|
|
for n in nodes
|
|
if n["name"] != "[pytorch|profiler|execution_trace|process]"
|
|
and n["name"] != "[pytorch|profiler|execution_trace|thread]"
|
|
)
|
|
return sorted(rf_id for rf_id in rf_ids_ if rf_id is not None)
|
|
|
|
def get_kineto_rf_ids(self, events: List[Json]) -> List[int]:
|
|
"""Returns a sorted list of Record function IDs for CPU operators and user annotations"""
|
|
ops_and_annotations = (
|
|
e for e in events if e.get("cat", "") in ["cpu_op", "user_annotation"]
|
|
)
|
|
return sorted(
|
|
e.get("args", {}).get("Record function id", -1) for e in ops_and_annotations
|
|
)
|
|
|
|
@unittest.skipIf(not kineto_available(), "Kineto is required")
|
|
def test_execution_trace_with_kineto(self):
|
|
trace_called_num = 0
|
|
|
|
def trace_handler(p):
|
|
nonlocal trace_called_num
|
|
trace_called_num += 1
|
|
|
|
use_cuda = torch.profiler.ProfilerActivity.CUDA in supported_activities()
|
|
# Create a temp file to save execution trace and kineto data.
|
|
fp = tempfile.NamedTemporaryFile("w+t", suffix=".et.json", delete=False)
|
|
fp.close()
|
|
kt = tempfile.NamedTemporaryFile(
|
|
mode="w+t", suffix=".kineto.json", delete=False
|
|
)
|
|
kt.close()
|
|
|
|
with profile(
|
|
activities=supported_activities(),
|
|
schedule=torch.profiler.schedule(
|
|
skip_first=3, wait=1, warmup=1, active=2, repeat=1
|
|
),
|
|
on_trace_ready=trace_handler,
|
|
execution_trace_observer=(
|
|
ExecutionTraceObserver().register_callback(fp.name)
|
|
),
|
|
) as p:
|
|
for idx in range(10):
|
|
with record_function(f"## LOOP {idx} ##"):
|
|
self.payload(use_cuda=use_cuda)
|
|
p.step()
|
|
self.assertEqual(fp.name, p.execution_trace_observer.get_output_file_path())
|
|
|
|
# Uncomment for debugging
|
|
# print("Output kineto = ", kt.name)
|
|
# print("Output ET = ", fp.name)
|
|
|
|
p.export_chrome_trace(kt.name)
|
|
self.assertEqual(trace_called_num, 1)
|
|
|
|
nodes = self.get_execution_trace_root(fp.name)
|
|
loop_count = 0
|
|
found_root_node = False
|
|
for n in nodes:
|
|
assert "name" in n
|
|
if "[pytorch|profiler|execution_trace|process]" in n["name"]:
|
|
found_root_node = True
|
|
if n["name"].startswith("## LOOP "):
|
|
loop_count += 1
|
|
self.assertTrue(found_root_node)
|
|
# Since profiler trace is active for 2 iterations
|
|
self.assertEqual(loop_count, 2)
|
|
|
|
# Compare the collected Execution Trace and Kineto Trace
|
|
# in terms of record func ID (rf_id) and External IDs
|
|
# both of these should match for the same trace window.
|
|
|
|
with open(kt.name) as f:
|
|
kineto = json.load(f)
|
|
events = kineto["traceEvents"]
|
|
|
|
# Look up rf_ids in both Execution and Kineto trace as two lists.
|
|
rf_ids_et = self.get_execution_trace_rf_ids(nodes)
|
|
rf_ids_kineto = self.get_kineto_rf_ids(events)
|
|
|
|
self.assertCountEqual(rf_ids_et, rf_ids_kineto)
|
|
self.assertListEqual(
|
|
rf_ids_et,
|
|
rf_ids_kineto,
|
|
msg=f"ET and kineto rf_id should exactly match\n"
|
|
f" rf_ids_et = {rf_ids_et}\n"
|
|
f" rf_ids_kineto = {rf_ids_kineto}\n",
|
|
)
|
|
|
|
def test_execution_trace_alone(self):
|
|
use_cuda = torch.profiler.ProfilerActivity.CUDA in supported_activities()
|
|
# Create a temp file to save execution trace data.
|
|
fp = tempfile.NamedTemporaryFile("w+t", suffix=".et.json", delete=False)
|
|
fp.close()
|
|
expected_loop_events = 0
|
|
|
|
et = ExecutionTraceObserver().register_callback(fp.name)
|
|
|
|
et.start()
|
|
for idx in range(5):
|
|
expected_loop_events += 1
|
|
with record_function(f"## LOOP {idx} ##"):
|
|
self.payload(use_cuda=use_cuda)
|
|
et.stop()
|
|
|
|
assert fp.name == et.get_output_file_path()
|
|
et.unregister_callback()
|
|
nodes = self.get_execution_trace_root(fp.name)
|
|
loop_count = 0
|
|
# Expected tensor object tuple size, in th form of:
|
|
# [tensor_id, storage_id, offset, numel, itemsize, device_str]
|
|
tensor_tuple_size = 6
|
|
found_root_node = False
|
|
for n in nodes:
|
|
assert "name" in n
|
|
if "[pytorch|profiler|execution_trace|process]" in n["name"]:
|
|
found_root_node = True
|
|
if n["name"].startswith("## LOOP "):
|
|
loop_count += 1
|
|
# Check if tensor tuple representation size is correct.
|
|
if n["name"] == "## TEST 2 ##":
|
|
assert len(n["inputs"]["values"][3][0]) == tensor_tuple_size
|
|
assert found_root_node
|
|
assert loop_count == expected_loop_events
|
|
|
|
@unittest.skipIf(IS_WINDOWS, "torch.compile does not support WINDOWS")
|
|
@unittest.skipIf(
|
|
sys.version_info >= (3, 12), "torch.compile is not supported on python 3.12+"
|
|
)
|
|
@unittest.skipIf(not TEST_CUDA or not has_triton(), "need CUDA and triton to run")
|
|
def test_execution_trace_with_pt2(self):
|
|
@torchdynamo.optimize("inductor")
|
|
def fn(a, b, c):
|
|
x = torch.nn.functional.linear(a, b)
|
|
x = x + c
|
|
return x.cos()
|
|
|
|
a, b, c = (torch.randn(4, 4, requires_grad=True).to("cuda") for _ in range(3))
|
|
|
|
inputs = [a, b, c]
|
|
with torch._inductor.config.patch(compile_threads=1):
|
|
fn(*inputs)
|
|
|
|
# Create a temp file to save execution trace data.
|
|
fp = tempfile.NamedTemporaryFile("w+t", suffix="_et.json", delete=False)
|
|
fp.close()
|
|
|
|
with profile(
|
|
activities=torch.profiler.supported_activities(),
|
|
record_shapes=True,
|
|
schedule=torch.profiler.schedule(
|
|
skip_first=3, wait=1, warmup=1, active=2, repeat=1
|
|
),
|
|
execution_trace_observer=(
|
|
ExecutionTraceObserver().register_callback(fp.name)
|
|
),
|
|
) as p:
|
|
for idx in range(10):
|
|
with record_function(f"## LOOP {idx} ##"):
|
|
fn(*inputs)
|
|
p.step()
|
|
|
|
nodes = self.get_execution_trace_root(fp.name)
|
|
found_captured_triton_kernel_node = False
|
|
for n in nodes:
|
|
assert "name" in n
|
|
if "triton_" in n["name"]:
|
|
for attr in n["attrs"]:
|
|
if attr["name"] == "kernel_file" and attr["value"] != "":
|
|
found_captured_triton_kernel_node = True
|
|
assert len(n["inputs"]["values"]) > 0
|
|
assert len(n["outputs"]["values"]) == 0
|
|
assert found_captured_triton_kernel_node
|
|
|
|
def test_execution_trace_start_stop(self):
|
|
use_cuda = torch.profiler.ProfilerActivity.CUDA in supported_activities()
|
|
# Create a temp file to save execution trace data.
|
|
fp = tempfile.NamedTemporaryFile("w+t", suffix=".et.json", delete=False)
|
|
fp.close()
|
|
expected_loop_events = 0
|
|
et = ExecutionTraceObserver().register_callback(fp.name)
|
|
for idx in range(10):
|
|
if idx == 3:
|
|
et.start()
|
|
elif idx == 5:
|
|
et.stop()
|
|
elif idx == 8:
|
|
et.start()
|
|
elif idx == 9:
|
|
et.stop()
|
|
if et._execution_trace_running:
|
|
expected_loop_events += 1
|
|
with record_function(f"## LOOP {idx} ##"):
|
|
self.payload(use_cuda=use_cuda)
|
|
|
|
assert fp.name == et.get_output_file_path()
|
|
et.unregister_callback()
|
|
nodes = self.get_execution_trace_root(fp.name)
|
|
loop_count = 0
|
|
found_root_node = False
|
|
for n in nodes:
|
|
assert "name" in n
|
|
if "[pytorch|profiler|execution_trace|process]" in n["name"]:
|
|
found_root_node = True
|
|
if n["name"].startswith("## LOOP "):
|
|
loop_count += 1
|
|
assert found_root_node
|
|
assert loop_count == expected_loop_events
|
|
|
|
def test_execution_trace_repeat_in_loop(self):
|
|
use_cuda = torch.profiler.ProfilerActivity.CUDA in supported_activities()
|
|
iter_list = {3, 4, 6, 8}
|
|
expected_loop_events = len(iter_list)
|
|
output_files = []
|
|
for idx in range(10):
|
|
if idx in iter_list:
|
|
# Create a temp file to save execution trace data.
|
|
fp = tempfile.NamedTemporaryFile("w+t", suffix=".et.json", delete=False)
|
|
fp.close()
|
|
output_files.append(fp.name)
|
|
et = ExecutionTraceObserver().register_callback(fp.name)
|
|
et.start()
|
|
with record_function(f"## LOOP {idx} ##"):
|
|
self.payload(use_cuda=use_cuda)
|
|
if idx in iter_list:
|
|
et.stop()
|
|
et.unregister_callback()
|
|
|
|
event_count = 0
|
|
for et_file in output_files:
|
|
nodes = self.get_execution_trace_root(et_file)
|
|
found_root_node = False
|
|
for n in nodes:
|
|
assert "name" in n
|
|
if "[pytorch|profiler|execution_trace|process]" in n["name"]:
|
|
assert n["id"] == 1
|
|
found_root_node = True
|
|
if n["name"].startswith("## LOOP "):
|
|
event_count += 1
|
|
assert found_root_node
|
|
assert event_count == expected_loop_events
|
|
|
|
def test_execution_trace_no_capture(self):
|
|
fp = tempfile.NamedTemporaryFile("w+t", suffix=".et.json", delete=False)
|
|
fp.close()
|
|
et = ExecutionTraceObserver().register_callback(fp.name)
|
|
|
|
assert fp.name == et.get_output_file_path()
|
|
et.unregister_callback()
|
|
nodes = self.get_execution_trace_root(fp.name)
|
|
for n in nodes:
|
|
assert "name" in n
|
|
if "[pytorch|profiler|execution_trace|process]" in n["name"]:
|
|
found_root_node = True
|
|
assert found_root_node
|
|
|
|
@skipIfTorchDynamo("https://github.com/pytorch/pytorch/issues/124500")
|
|
def test_execution_trace_nested_tensor(self):
|
|
fp = tempfile.NamedTemporaryFile("w+t", suffix=".et.json", delete=False)
|
|
fp.close()
|
|
|
|
observer = ExecutionTraceObserver().register_callback(fp.name)
|
|
|
|
def fn(nt):
|
|
return nt.sin().cos()
|
|
|
|
with torch.profiler.profile(execution_trace_observer=observer) as prof:
|
|
for i in range(3):
|
|
values = torch.rand((8 + i, 4 + i))
|
|
offsets = torch.tensor([0, 2, 4, 6, 8 + i])
|
|
nt = torch.nested.nested_tensor_from_jagged(values, offsets)
|
|
fn(nt)
|
|
|
|
nodes = self.get_execution_trace_root(fp.name)
|
|
found_cos = False
|
|
for n in nodes:
|
|
assert "name" in n
|
|
if "cos" in n["name"]:
|
|
found_cos = True
|
|
assert found_cos
|
|
|
|
|
|
if __name__ == "__main__":
|
|
run_tests()
|