pytorch/test/rpc_test.py
Yanli Zhao 631e2ee7a4 make python udf serialization format to be binary plus tensor tables (#27136)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/27136

make python udf serialization format to be binary plus tensor tables, so that tensors can be attached to autograd graph, handled in the same way as builtin operators
ghstack-source-id: 91156141

Test Plan: unit tests

Reviewed By: pritamdamania87

Differential Revision: D17405686

fbshipit-source-id: 4a8c9804f6ad239eb0655fa5daeb54580d4741fd
2019-10-02 00:10:32 -07:00

595 lines
19 KiB
Python

#!/usr/bin/env python3
from __future__ import absolute_import, division, print_function, unicode_literals
import functools
import sys
import unittest
from os import getenv
from unittest import mock
import torch
import torch.distributed as dist
import torch.distributed.rpc_backend_registry as rpc_backend_registry
from collections import namedtuple
from torch.distributed.internal_rpc_utils import _internal_rpc_pickler, PythonUDF
if not dist.is_available():
print("c10d not available, skipping tests")
sys.exit(0)
from common_utils import load_tests
from torch.distributed.rpc_api import RpcBackend
BACKEND = getenv("RPC_BACKEND", RpcBackend.PROCESS_GROUP)
RPC_INIT_URL = getenv("RPC_INIT_URL", "")
def stub_init_rpc_backend_handler(self_rank, self_name, init_method):
return mock.Mock() # RpcAgent.
# it is used to test python user defined function over rpc
# classes and functions are used to test python user defined class and
# methods over rpc
TensorClass = namedtuple("TensorClass", ["tensors"])
class MyPickleClass:
def __init__(self):
self.t = None
def __getstate__(self):
(pickled_python_udf, tensors) = _internal_rpc_pickler.serialize(
PythonUDF(my_tensor_function,
(torch.ones(2, 2), torch.ones(2, 2)),
None))
return (pickled_python_udf, tensors)
def __setstate__(self, obj):
python_udf = _internal_rpc_pickler.deserialize(obj[0], obj[1])
result = python_udf.func(python_udf.args[0], python_udf.args[1])
self.t = result
def set(self, val):
self.t = val
class MyClass:
def __init__(self, a):
self.a = a
def my_instance_method(self, b):
return self.a + b
@classmethod
def my_class_method(cls, d, e):
return d + e
@staticmethod
def my_static_method(f):
return f > 10
def run_nested_pickle(pickle_cls_instance, tensor):
return pickle_cls_instance.t + tensor
def build_complex_tensors():
a = torch.ones(3, 3)
b = [a, a]
c = [b, b]
d = [a, b]
e = {a : d}
return [a, b, c, d, e]
def my_function(a, b, c):
return a + b + c
def my_tensor_function(a, b):
return a + b
def my_complex_tensor_function(list_input, tensor_class_input, dict_input):
res = list_input[0]
for t in list_input:
res += t
for k, v in dict_input.items():
res += v
complex_tensors = tensor_class_input.tensors
return (res, complex_tensors[0], complex_tensors[1], complex_tensors[2])
def no_result():
print("do nothing")
def nested_rpc(dst):
return dist.rpc_sync(dst, torch.add, args=(torch.ones(2, 2), 1))
def light_rpc():
return 0
def heavy_rpc(tensor):
for i in range(1, 100):
tensor *= i
tensor /= i + 1
return 0
def raise_func():
raise ValueError("Expected error")
# load_tests from common_utils is used to automatically filter tests for
# sharding on sandcastle. This line silences flake warnings
load_tests = load_tests
def _wrap_with_rpc(test_method):
"""
We use this decorator for setting up and tearing down state since
MultiProcessTestCase runs each `test*` method in a separate process and
each process just runs the `test*` method without actually calling
'setUp' and 'tearDown' methods of unittest.
"""
@functools.wraps(test_method)
def wrapper(self, *arg, **kwargs):
store = dist.FileStore(self.file_name, self.world_size)
dist.init_process_group(
backend="gloo", rank=self.rank, world_size=self.world_size, store=store
)
dist.init_model_parallel(
self_name="worker%d" % self.rank,
backend=BACKEND,
self_rank=self.rank,
init_method=RPC_INIT_URL,
)
test_method(self, *arg, **kwargs)
dist.join_rpc()
return wrapper
@unittest.skipIf(
sys.version_info < (3, 0),
"Pytorch distributed rpc package " "does not support python2",
)
class RpcTest(object):
@property
def world_size(self):
return 4
@_wrap_with_rpc
def test_worker_id(self):
n = self.rank + 1
peer_rank = n % self.world_size
self_worker_id = dist.get_worker_id()
peer_worker_id = dist.get_worker_id("worker{}".format(peer_rank))
self.assertEqual(self_worker_id.name, "worker{}".format(self.rank))
self.assertEqual(peer_worker_id.name, "worker{}".format(peer_rank))
with self.assertRaisesRegex(RuntimeError, "Unknown destination worker"):
unknown_worker_id = dist.get_worker_id("WorkerUnknown")
@_wrap_with_rpc
def test_self_add(self):
self_worker_id = dist.get_worker_id()
self_worker_name = "worker{}".format(self.rank)
with self.assertRaisesRegex(
RuntimeError, "does not support making RPC calls to self"
):
dist.rpc_sync(self_worker_id, torch.add, args=(torch.ones(2, 2), 1))
with self.assertRaisesRegex(
RuntimeError, "does not support making RPC calls to self"
):
dist.rpc_sync(self_worker_name, torch.add, args=(torch.ones(2, 2), 1))
@mock.patch.object(torch.distributed.autograd, "_init")
@mock.patch.object(torch.distributed.rpc_api, "init_rref_context")
def test_register_rpc_backend_and_init_rpc_backend(
self, mock_init_rref_context, mock_dist_autograd_init
):
backend_name = "stub_backend"
rpc_backend_registry.register_rpc_backend(
backend_name, stub_init_rpc_backend_handler
)
dist.init_model_parallel(self_name="worker1", backend=backend_name, self_rank=1)
@unittest.skipIf(
BACKEND != RpcBackend.PROCESS_GROUP,
"PROCESS_GROUP rpc backend specific test, skip",
)
def test_duplicate_name(self):
store = dist.FileStore(self.file_name, self.world_size)
dist.init_process_group(
backend="gloo", rank=self.rank, world_size=self.world_size, store=store
)
with self.assertRaisesRegex(RuntimeError, "is not unique"):
dist.init_model_parallel(
self_name="duplicate_name",
backend=BACKEND,
self_rank=self.rank,
init_method=RPC_INIT_URL,
)
dist.join_rpc()
def test_reinit(self):
store = dist.FileStore(self.file_name, self.world_size)
dist.init_process_group(
backend="gloo", rank=self.rank, world_size=self.world_size, store=store
)
dist.init_model_parallel(
self_name="worker{}".format(self.rank),
backend=BACKEND,
self_rank=self.rank,
init_method=RPC_INIT_URL,
)
with self.assertRaisesRegex(RuntimeError, "is already initialized"):
dist.init_model_parallel(
self_name="worker{}".format(self.rank),
backend=BACKEND,
self_rank=self.rank,
init_method=RPC_INIT_URL,
)
dist.join_rpc()
def test_init_invalid_backend(self):
with self.assertRaisesRegex(RuntimeError, "Unrecognized RPC backend"):
dist.init_model_parallel(
self_name="worker{}".format(self.rank),
backend="invalid",
self_rank=self.rank,
init_method=RPC_INIT_URL,
)
@unittest.skip("Test is flaky, see https://github.com/pytorch/pytorch/issues/25912")
def test_invalid_names(self):
store = dist.FileStore(self.file_name, self.world_size)
dist.init_process_group(
backend="gloo", rank=self.rank, world_size=self.world_size, store=store
)
with self.assertRaisesRegex(RuntimeError, "Worker name must match"):
dist.init_model_parallel(self_name="abc*")
with self.assertRaisesRegex(RuntimeError, "Worker name must match"):
dist.init_model_parallel(self_name=" ")
with self.assertRaisesRegex(RuntimeError, "must be non-empty"):
dist.init_model_parallel(self_name="")
# If the number in the message does not match, it is likely that the
# value of MAX_NAME_LEN in RPC WorkerId has changed.
with self.assertRaisesRegex(RuntimeError, "shorter than 128"):
dist.init_model_parallel(
self_name="".join(["a" for _ in range(500)]),
backend=BACKEND,
self_rank=self.rank,
init_method=RPC_INIT_URL,
)
dist.join_rpc()
@_wrap_with_rpc
def test_add(self):
n = self.rank + 1
dst_rank = n % self.world_size
ret = dist.rpc_sync(
"worker{}".format(dst_rank),
torch.add,
args=(torch.ones(n, n), torch.ones(n, n)),
)
self.assertEqual(ret, torch.ones(n, n) * 2)
@_wrap_with_rpc
def test_add_with_id(self):
n = self.rank + 1
dst_rank = n % self.world_size
workder_id = dist.get_worker_id("worker{}".format(dst_rank))
ret = dist.rpc_sync(
workder_id, torch.add, args=(torch.ones(n, n), torch.ones(n, n))
)
self.assertEqual(ret, torch.ones(n, n) * 2)
@_wrap_with_rpc
def test_scalar_add(self):
n = self.rank + 1
dst_rank = n % self.world_size
ret = dist.rpc_sync(
"worker{}".format(dst_rank), torch.add, args=(torch.ones(n, n), n)
)
self.assertEqual(ret, (torch.ones(n, n) + n))
@_wrap_with_rpc
def test_async_add(self):
n = self.rank + 1
dst_rank = n % self.world_size
fut = dist.rpc_async(
"worker{}".format(dst_rank),
torch.add,
args=(torch.ones(n, n), torch.ones(n, n)),
)
self.assertEqual(fut.wait(), torch.ones(n, n) * 2)
@_wrap_with_rpc
def test_nonzero(self):
n = self.rank + 1
dst_rank = n % self.world_size
x = torch.ones(self.world_size, self.world_size)
x[self.rank][self.rank] = 0
ret = dist.rpc_sync("worker{}".format(dst_rank), torch.nonzero, args=(x,))
self.assertEqual(ret, x.nonzero())
@_wrap_with_rpc
def test_multi_rpc(self):
dst_rank = (self.rank + 1) % self.world_size
for i in range(20):
n = i + self.rank + 1
ret = dist.rpc_sync(
"worker{}".format(dst_rank),
torch.add,
args=(torch.ones(n, n), torch.ones(n, n)),
)
self.assertEqual(ret, torch.ones(n, n) * 2)
@_wrap_with_rpc
def test_sync_rpc(self):
dst_rank = (self.rank + 1) % self.world_size
for i in range(20):
dist.sync_rpc()
n = i + self.rank + 1
ret1 = dist.rpc_sync(
"worker{}".format(dst_rank),
torch.add,
args=(torch.ones(n, n), torch.ones(n, n)),
)
dist.sync_rpc()
ret2 = dist.rpc_sync(
"worker{}".format(dst_rank), torch.add, args=(torch.ones(n, n), 2)
)
dist.sync_rpc()
self.assertEqual(ret1, torch.ones(n, n) * 2)
self.assertEqual(ret2, torch.ones(n, n) * 3)
@_wrap_with_rpc
def test_join_rpc(self):
n = self.rank + 1
dst_rank = n % self.world_size
ret = dist.rpc_sync(
"worker{}".format(dst_rank),
torch.add,
args=(torch.ones(n, n), torch.ones(n, n)),
)
self.assertEqual(ret, torch.ones(n, n) * 2)
dist.join_rpc()
with self.assertRaisesRegex(RuntimeError, "^RPC has not been initialized"):
dist.rpc_sync(
"worker{}".format(dst_rank),
torch.add,
args=(torch.ones(n, n), torch.ones(n, n)),
)
# it's safe to call join_rpc() multiple times
dist.join_rpc()
@_wrap_with_rpc
def test_py_built_in(self):
n = self.rank + 1
dst_rank = n % self.world_size
ret = dist.rpc_sync("worker{}".format(dst_rank), min, args=(n, n + 1, n + 2))
self.assertEqual(ret, min(n, n + 1, n + 2))
@_wrap_with_rpc
def test_py_user_defined(self):
n = self.rank + 1
dst_rank = n % self.world_size
ret = dist.rpc_sync(
"worker{}".format(dst_rank),
my_function,
kwargs={"a": n, "b": n + 1, "c": n + 2},
)
self.assertEqual(ret, my_function(n, n + 1, n + 2))
@_wrap_with_rpc
def test_py_class_constructor(self):
n = self.rank + 1
dst_rank = n % self.world_size
ret = dist.rpc_sync("worker{}".format(dst_rank), MyClass, args=(n,))
self.assertEqual(ret.a, n)
@_wrap_with_rpc
def test_py_class_instance_method(self):
n = self.rank + 1
dst_rank = n % self.world_size
ret = dist.rpc_sync(
"worker{}".format(dst_rank), MyClass(2).my_instance_method, args=(n,)
)
self.assertEqual(ret, MyClass(2).my_instance_method(n))
@_wrap_with_rpc
def test_py_class_method(self):
n = self.rank + 1
dst_rank = n % self.world_size
ret = dist.rpc_sync(
"worker{}".format(dst_rank), MyClass.my_class_method, args=(n, n + 1)
)
self.assertEqual(ret, MyClass.my_class_method(n, n + 1))
@_wrap_with_rpc
def test_py_class_static_method(self):
n = self.rank + 1
dst_rank = n % self.world_size
ret = dist.rpc_sync(
"worker{}".format(dst_rank), MyClass.my_static_method, args=(n + 10,)
)
self.assertEqual(ret, MyClass.my_static_method(n + 10))
@_wrap_with_rpc
def test_py_multi_async_call(self):
n = self.rank + 1
dst_rank = n % self.world_size
dst_worker_id = dist.get_worker_id("worker{}".format(dst_rank))
fut1 = dist.rpc_async(dst_worker_id, MyClass.my_static_method, args=(n + 10,))
fut2 = dist.rpc_async(dst_worker_id, min, args=(n, n + 1, n + 2))
self.assertEqual(fut1.wait(), MyClass.my_static_method(n + 10))
self.assertEqual(fut2.wait(), min(n, n + 1, n + 2))
@_wrap_with_rpc
def test_py_no_return_result(self):
n = self.rank + 1
dst_rank = n % self.world_size
ret = dist.rpc_sync("worker{}".format(dst_rank), no_result)
self.assertEqual(ret, no_result())
@_wrap_with_rpc
def test_py_tensors(self):
n = self.rank + 1
dst_rank = n % self.world_size
ret = dist.rpc("worker{}".format(dst_rank),
my_tensor_function,
args=(torch.ones(n, n), torch.ones(n, n)))
self.assertEqual(ret,
my_tensor_function(torch.ones(n, n),
torch.ones(n, n)))
@_wrap_with_rpc
def test_py_tensors_multi_async_call(self):
futs = []
n = self.rank + 1
dst_rank = n % self.world_size
for i in range(100):
fut = dist.rpc("worker{}".format(dst_rank),
my_tensor_function,
args=(torch.ones(i, i), torch.ones(i, i)),
async_call=True)
futs.append(fut)
j = 0
for fut in futs:
self.assertEqual(fut.wait(),
my_tensor_function(torch.ones(j, j),
torch.ones(j, j)))
j += 1
@_wrap_with_rpc
def test_py_tensors_in_container(self):
n = self.rank + 1
dst_rank = n % self.world_size
a = [torch.ones(n, n), torch.ones(n, n)]
b = TensorClass(build_complex_tensors())
c = {"foo": torch.ones(n, n), "bar": torch.ones(n, n)}
ret = dist.rpc("worker{}".format(dst_rank),
my_complex_tensor_function,
args=(a, b, c))
self.assertEqual(ret, my_complex_tensor_function(a, b, c))
@_wrap_with_rpc
def test_py_nested_pickle(self):
n = self.rank + 1
dst_rank = n % self.world_size
ret = dist.rpc("worker{}".format(dst_rank),
run_nested_pickle,
args=(MyPickleClass(), torch.ones(2, 2)))
m = MyPickleClass()
m.set(my_tensor_function(torch.ones(2, 2), torch.ones(2, 2)))
self.assertEqual(ret, run_nested_pickle(m, torch.ones(2, 2)))
@_wrap_with_rpc
def test_py_function_exception(self):
n = self.rank + 1
dst_rank = n % self.world_size
with self.assertRaisesRegex(Exception, "TypeError"):
ret = dist.rpc_sync("worker{}".format(dst_rank), no_result, args=(10,))
@_wrap_with_rpc
def test_py_raise_in_user_func(self):
n = self.rank + 1
dst_rank = n % self.world_size
fut = dist.rpc_async("worker{}".format(dst_rank), raise_func)
with self.assertRaisesRegex(Exception, "ValueError"):
fut.wait()
@_wrap_with_rpc
def test_nested_rpc(self):
n = self.rank + 1
dst_rank = n % self.world_size
ret = dist.rpc_sync(
"worker{}".format(dst_rank),
nested_rpc,
args=("worker{}".format(self.rank),),
)
self.assertEqual(ret, torch.ones(2, 2) + 1)
def _stress_test_rpc(self, f, repeat=1000, args=()):
import time
n = self.rank + 1
dst_rank = n % self.world_size
futs = []
tik = time.time()
for _ in range(repeat):
fut = dist.rpc_async("worker{}".format(dst_rank), f, args=args)
futs.append(fut)
for fut in futs:
self.assertEqual(fut.wait(), 0)
tok = time.time()
print(
"Rank {} finished testing {} {} times in {} seconds.".format(
self.rank, f.__name__, repeat, tok - tik
)
)
@_wrap_with_rpc
def test_stress_light_rpc(self):
self._stress_test_rpc(light_rpc)
@_wrap_with_rpc
def test_stress_heavy_rpc(self):
self._stress_test_rpc(heavy_rpc, repeat=20, args=(torch.ones(100, 100),))
@_wrap_with_rpc
def test_builtin_remote_ret(self):
n = self.rank + 1
dst_rank = n % self.world_size
rref = dist.remote(
"worker{}".format(dst_rank),
torch.add,
args=(torch.ones(n, n), torch.ones(n, n)),
)
self.assertEqual(rref.to_here(), torch.ones(n, n) * 2)
@_wrap_with_rpc
def test_multi_builtin_remote_ret(self):
m = 10
n = self.rank + 1
dst_rank = n % self.world_size
rrefs = []
expected = []
for i in range(m):
n = n + i
rrefs.append(
dist.remote(
"worker{}".format(dst_rank),
torch.add,
args=(torch.ones(n, n), torch.ones(n, n)),
)
)
expected.append(torch.ones(n, n) * 2)
for i in range(m):
self.assertEqual(rrefs[i].to_here(), expected[i])