pytorch/torch/csrc/jit/codegen/fuser/interface.cpp
Bert Maher 6309b342c3 [nnc] Enable CPU fuser inside FB, take 5 (#59461)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/59461

long tail test failues
ghstack-source-id: 130607578

Test Plan: fixed T92123560

Reviewed By: navahgar

Differential Revision: D28892885

fbshipit-source-id: 762a275b5aa14af0847e46cbf4036d3342b82189
2021-06-04 16:26:46 -07:00

116 lines
3.4 KiB
C++

#include <torch/csrc/jit/codegen/fuser/interface.h>
#include <torch/csrc/jit/codegen/fuser/compiler.h>
#include <torch/csrc/jit/codegen/fuser/executor.h>
#include <torch/csrc/jit/codegen/fuser/fallback.h>
#include <torch/csrc/jit/codegen/fuser/kernel_cache.h>
#include <c10/util/Flags.h>
#include <stdexcept>
// NOLINTNEXTLINE(cppcoreguidelines-avoid-non-const-global-variables)
C10_DEFINE_bool(torch_jit_enable_cpu_fusion, false, "enable cpu fusion");
namespace torch {
namespace jit {
namespace detail {
// Note: CPU fusion is currently disabled due to test flakiness
// NOLINTNEXTLINE(cppcoreguidelines-avoid-non-const-global-variables)
#if defined(FBCODE_CAFFE2)
bool cpu_fuser_enabled = true;
#else
bool cpu_fuser_enabled = false;
#endif
// NOLINTNEXTLINE(cppcoreguidelines-avoid-non-const-global-variables)
bool gpu_fuser_enabled = true;
} // namespace detail
int64_t registerFusion(const Node* fusion_group) {
return fuser::registerFusion(fusion_group);
}
void runFusion(const int64_t key, Stack& stack) {
const auto result = fuser::runFusion(key, stack);
if (!result)
fuser::runFallback(key, stack);
}
bool canFuseOnCPU() {
return fuser::hasFusionBackend(DeviceType::CPU) &&
(detail::cpu_fuser_enabled || FLAGS_torch_jit_enable_cpu_fusion);
}
bool canFuseOnGPU() {
return fuser::hasFusionBackend(DeviceType::CUDA) && detail::gpu_fuser_enabled;
}
void overrideCanFuseOnCPU(bool value) {
detail::cpu_fuser_enabled = value;
}
void overrideCanFuseOnGPU(bool value) {
detail::gpu_fuser_enabled = value;
}
// Uses the above interface by stuffing the graph into a node and treating that
// node as a fusion group.
std::vector<at::Tensor> debugLaunchGraph(
Graph& graph,
at::ArrayRef<at::Tensor> inputs) {
// Creates a fusion group node
auto wrapper_graph = std::make_shared<Graph>();
Node* fusion_group = wrapper_graph->insertNode(
wrapper_graph->createWithSubgraph(prim::FusionGroup));
fusion_group->g_(attr::Subgraph, graph.copy());
for (size_t i = 0; i < graph.inputs().size(); ++i) {
fusion_group->addInput(wrapper_graph->addInput());
}
for (size_t i = 0; i < graph.outputs().size(); ++i) {
wrapper_graph->registerOutput(fusion_group->addOutput());
}
// Creates the stack, registers and runs the fusion
Stack stack = fmap<IValue>(inputs);
const auto key = fuser::registerFusion(fusion_group);
fuser::runFusion(key, stack);
return fmap(stack, [](const IValue& iv) { return iv.toTensor(); });
}
std::string debugGetFusedKernelCode(
Graph& graph,
at::ArrayRef<at::Tensor> inputs) {
// Creates a fusion group node
auto wrapper_graph = std::make_shared<Graph>();
Node* fusion_group = wrapper_graph->insertNode(
wrapper_graph->createWithSubgraph(prim::FusionGroup));
fusion_group->g_(attr::Subgraph, graph.copy());
for (size_t i = 0; i < graph.inputs().size(); ++i) {
fusion_group->addInput(wrapper_graph->addInput());
}
for (size_t i = 0; i < graph.outputs().size(); ++i) {
wrapper_graph->registerOutput(fusion_group->addOutput());
}
// Creates the stack, registers and runs the fusion
Stack stack = fmap<IValue>(inputs);
const auto key = fuser::registerFusion(fusion_group);
std::string code;
if (!fuser::runFusion(key, stack, &code)) {
throw std::runtime_error("Could not run fusion for graph");
}
return code;
}
size_t nCompiledKernels() {
return fuser::nCompiledKernels();
}
} // namespace jit
} // namespace torch