pytorch/torch/_inductor/codegen/mps.py
angelayi 23cf241039 [aoti][mps] Initialize mps kernels first (#159753)
In some cases we have mps kernels which are reused across higher-order-op subgraphs and the toplevel code. However, currently we initialize the variable for the mps kernel the first time we use it, which runs into an issue if we run into the mps kernel within a subgraph since the kernel will only be initialized within the subgraph scope. For instance:
```
if ...
    auto mps_lib_0_func = ...
    mps_lib_0_func->run()

// since we already used mps_lib_0 once, we don't re-initialize it
mps_lib_0_func->run()  // error, mps_lib_0_func not initialized
```

So the solution we took here is to initialize all the kernels at the beginning:
```
const std::shared_ptr<at::native::mps::MetalKernelFunction> get_mps_lib_0() {
    static const auto func = mps_lib_0.getKernelFunction("generated_kernel");
    return func;
}
AOTIMetalKernelFunctionHandle get_mps_lib_0_handle() {
    static const auto handle = AOTIMetalKernelFunctionHandle(get_mps_lib_0().get());
    return handle;
}
...
if ...
    get_mps_lib_0()->run()

get_mps_lib_0()->run()  // success
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/159753
Approved by: https://github.com/malfet
ghstack dependencies: #159456, #159695
2025-08-06 07:54:29 +00:00

1069 lines
40 KiB
Python

# This is not a feature-complete compiler backend
# Just an early prototype that shows that one can compile elementwise ops into a Metal shader
from __future__ import annotations
import functools
import itertools
import logging
import math
from pathlib import Path
from typing import Any, Optional, TYPE_CHECKING
import sympy
from sympy.printing.precedence import PRECEDENCE
import torch
from torch.utils._cpp_embed_headers import _embed_headers
from torch.utils._ordered_set import OrderedSet
from torch.utils._sympy.printers import CppPrinter, ExprPrinter as ExprPrinter_
from torch.utils._sympy.value_ranges import ValueRanges
from ..utils import ceildiv, get_bounds_index_expr, get_kernel_metadata
from ..virtualized import ops, OpsWrapper, V
from .common import (
CSEVariable,
DeferredLine,
DTYPE_TO_COMPUTATION_DTYPE,
IndentedBuffer,
OpOverrides,
PythonPrinter,
)
from .simd import IterationRangesEntry, SIMDKernel, SIMDScheduling
if TYPE_CHECKING:
from typing import Union
from ..ops_handler import ReductionType, StoreMode
from ..scheduler import Scheduler, SchedulerNode
from .common import OpVarT
log = logging.getLogger(__name__)
DTYPE_TO_METAL = {
torch.bool: "bool",
torch.int8: "char",
torch.int16: "short",
torch.int32: "int",
torch.int64: "long",
torch.uint8: "uchar",
torch.float: "float",
torch.half: "half",
torch.bfloat16: "bfloat",
}
def value_to_metal(val: Union[float, int, bool, str, CSEVariable]) -> str:
if isinstance(val, float):
if val == torch.inf:
return "HUGE_VALF"
elif val == -torch.inf:
return "-HUGE_VALF"
elif val != val: # Only float that not equal to self is nan
return "NAN"
return str(val)
elif isinstance(val, bool):
return "true" if val else "false"
return str(val)
class MetalExprPrinter(ExprPrinter_):
"""Converts sympy expression to Metal code snippet"""
def _print_FloorDiv(self, expr: sympy.Expr) -> str:
x, div = expr.args
x = self.doprint(x)
div = self.doprint(div)
if expr.is_integer:
return f"c10::metal::floor_divide({x}, {div})"
return f"metal::floor({x}) / ({div})"
def _print_ModularIndexing(self, expr: sympy.Expr) -> str:
x, div, mod = expr.args
x = self.doprint(x)
if div != 1:
div = self.doprint(div)
if expr.is_integer:
x = f"({x}) / ({div})"
else:
x = f"metal::floor({x}) / ({div})"
mod = self.doprint(mod)
return f"({x}) % ({mod})"
def _print_Min(self, expr: sympy.Expr) -> str:
if len(expr.args) != 2:
raise RuntimeError("metal::min only supported for 2 args")
a, b = map(self._print, expr.args)
typecast_a = f"static_cast<decltype({a}+{b})>({a})"
typecast_b = f"static_cast<decltype({a}+{b})>({b})"
return f"metal::min({typecast_a}, {typecast_b})"
def _print_Max(self, expr: sympy.Expr) -> str:
if len(expr.args) != 2:
raise RuntimeError("metal::max only supported for 2 args")
a, b = map(self._print, expr.args)
typecast_a = f"static_cast<decltype({a}+{b})>({a})"
typecast_b = f"static_cast<decltype({a}+{b})>({b})"
return f"metal::max({typecast_a}, {typecast_b})"
def _print_Abs(self, expr: sympy.Expr) -> str:
assert len(expr.args) == 1
return f"metal::abs({self._print(expr.args[0])})"
def _print_RoundToInt(self, expr: sympy.Expr) -> str:
assert len(expr.args) == 1
return f"static_cast<long>(metal::rint({self._print(expr.args[0])}))"
def _print_RoundDecimal(self, expr: sympy.Expr) -> str:
assert len(expr.args) == 2
number, ndigits = expr.args
if number.is_integer:
# ndigits < 0 should have been filtered by the sympy function
assert ndigits < 0
raise ValueError(
f"For integer inputs, only non-negative ndigits are currently supported, but got {ndigits}."
)
number_str = self.parenthesize(number, PRECEDENCE["Mul"])
return f"static_cast<float>(metal::rint(1e{ndigits} * {number_str}) * 1e{-ndigits})"
def _print_IntTrueDiv(self, expr: sympy.Expr) -> str:
lhs, rhs = expr.args
# TODO: This is only accurate up to 2**23
return f"static_cast<float>({self._print(lhs)}) / static_cast<float>({self._print(rhs)})"
def _print_PowByNatural(self, expr: sympy.Expr) -> str:
assert len(expr.args) == 2
x, y = map(self.doprint, expr.args)
return f"metal::pow(static_cast<float>({x}), static_cast<float>({y}))"
def _print_ToFloat(self, expr: sympy.Expr) -> str:
assert len(expr.args) == 1
x = self.doprint(expr.args[0])
return f"static_cast<float>({x})"
def _print_FloorToInt(self, expr: sympy.Expr) -> str:
assert len(expr.args) == 1
x = self.doprint(expr.args[0])
return f"static_cast<int>(metal::floor(static_cast<float>({x})))"
_print_floor = _print_FloorToInt
def _print_TruncToInt(self, expr: sympy.Expr) -> str:
assert len(expr.args) == 1
x = self.doprint(expr.args[0])
return f"static_cast<int>(metal::trunc({x}))"
def _print_OpaqueUnaryFn_log2(self, expr: sympy.Expr) -> str:
assert len(expr.args) == 1
x = self.doprint(expr.args[0])
return f"metal::log2({x})"
class MetalOverrides(OpOverrides):
"""Implements Metal-specific overrides for ops. Base class emits Python-friendly overrides."""
@staticmethod
def to_dtype(
x: CSEVariable,
dtype: torch.dtype,
src_dtype: Optional[torch.dtype] = None,
use_compute_types: bool = True,
) -> str:
if dtype == torch.double:
log.warning(
"float64 cast requested, probably from tensorify_python_scalars"
)
return f"static_cast<float>({x})"
return f"static_cast<{DTYPE_TO_METAL[dtype]}>({x})"
@staticmethod
def to_dtype_bitcast(
x: CSEVariable, dtype: torch.dtype, src_dtype: torch.dtype
) -> str:
return f"as_type<{DTYPE_TO_METAL[dtype]}>(static_cast<{DTYPE_TO_METAL[src_dtype]}>({x}))"
@staticmethod
def constant(val: Union[bool, float, int], dtype: torch.dtype) -> str:
return value_to_metal(val)
@staticmethod
def index_expr(expr: sympy.Expr, dtype: torch.dtype) -> str:
idx_str = V.kernel.index_to_str(V.kernel.prepare_indexing(expr))
var = V.kernel.cse.generate(
V.kernel.compute, idx_str, bounds=get_bounds_index_expr(expr)
)
return ops.to_dtype(var, dtype)
@staticmethod
def masked(mask: CSEVariable, body: sympy.Expr, other: CSEVariable) -> str:
# TODO: Type annotation for other is wrong, it's often float or int
with V.kernel.mask_loads(mask, other) as new_mask:
result = body()
if result.bounds.is_bool:
other = bool(other) # type: ignore[assignment]
return ops.where(new_mask, result, other)
@staticmethod
def where(a: OpVarT, b: OpVarT, c: OpVarT) -> str:
return f"{a} ? {b} : {value_to_metal(c)}"
@staticmethod
def remainder(a: OpVarT, b: OpVarT) -> str:
return f"c10::metal::remainder({a}, {b})"
@staticmethod
def maximum(a: CSEVariable, b: CSEVariable) -> str:
typecast_a = f"static_cast<decltype({a}+{b})>({a})"
typecast_b = f"static_cast<decltype({a}+{b})>({b})"
return f"c10::metal::max({typecast_a}, {typecast_b})"
@staticmethod
def minimum(a: CSEVariable, b: CSEVariable) -> str:
typecast_a = f"static_cast<decltype({a}+{b})>({a})"
typecast_b = f"static_cast<decltype({a}+{b})>({b})"
return f"c10::metal::min({typecast_a}, {typecast_b})"
@staticmethod
def logical_or(a: CSEVariable, b: CSEVariable) -> str:
return f"{a} || {b}"
@staticmethod
def logical_and(a: CSEVariable, b: CSEVariable) -> str:
return f"{a} && {b}"
@staticmethod
def isnan(x: CSEVariable) -> str:
return f"metal::isnan({x})"
@staticmethod
def isinf(x: CSEVariable) -> str:
return f"metal::isinf({x})"
@staticmethod
def log(x: CSEVariable) -> str:
return f"metal::log({x})"
@staticmethod
def exp(x: CSEVariable) -> str:
return f"metal::exp({x})"
@staticmethod
def abs(x: CSEVariable) -> str:
return f"metal::abs({x})"
@staticmethod
def signbit(x: CSEVariable) -> str:
return f"metal::signbit({x})"
@staticmethod
def sin(x: CSEVariable) -> str:
return f"metal::precise::sin({x})"
@staticmethod
def sinc(x: CSEVariable) -> str:
return f"c10::metal::sinc({x})"
@staticmethod
def cos(x: CSEVariable) -> str:
return f"metal::precise::cos({x})"
@staticmethod
def tan(x: CSEVariable) -> str:
return f"metal::tan({x})"
@staticmethod
def asin(x: CSEVariable) -> str:
return f"metal::asin({x})"
@staticmethod
def acos(x: CSEVariable) -> str:
return f"metal::acos({x})"
@staticmethod
def atan(x: CSEVariable) -> str:
return f"metal::atan({x})"
@staticmethod
def atan2(x: CSEVariable, y: CSEVariable) -> str:
return f"::metal::atan2({x}, {y})"
@staticmethod
def sqrt(x: CSEVariable) -> str:
return f"metal::sqrt({x})"
@staticmethod
def neg(x: CSEVariable) -> str:
# TODO: Does it rely on undefined behavior?
# If so, add special logic for unsigned types
return f"static_cast<decltype({x})>(-{x})"
@staticmethod
def rsqrt(x: CSEVariable) -> str:
return f"metal::rsqrt({x})"
@staticmethod
def tanh(x: CSEVariable) -> str:
return f"metal::tanh({x})"
@staticmethod
def atanh(x: CSEVariable) -> str:
return f"metal::atanh({x})"
@staticmethod
def floordiv(a: CSEVariable, b: CSEVariable) -> str:
# a and b must be of integer type
return f"c10::metal::floor_divide({a}, {b})"
@staticmethod
def floor(x: CSEVariable) -> str:
return f"metal::floor({x})"
@staticmethod
def sign(x: CSEVariable) -> str:
return f"metal::sign({x})"
@staticmethod
def fmod(a: CSEVariable, b: CSEVariable) -> str:
typecast_a = f"static_cast<decltype({a}+{b})>({a})"
typecast_b = f"static_cast<decltype({a}+{b})>({b})"
return f"metal::fmod({typecast_a}, {typecast_b})"
@staticmethod
def trunc(x: CSEVariable) -> str:
return f"metal::trunc({x})"
@staticmethod
def truncdiv(a: CSEVariable, b: CSEVariable) -> str:
quot = f"{a} / {b}"
if (a.dtype is not None and a.dtype.is_floating_point) or (
b.dtype is not None and b.dtype.is_floating_point
):
return f"metal::trunc({quot})"
return quot
@staticmethod
def ceil(x: CSEVariable) -> str:
return f"metal::ceil({x})"
@staticmethod
def rand(seed: CSEVariable, offset: CSEVariable) -> str:
V.kernel.headers.add("random")
return f"c10::metal::rand({seed}, {offset})"
@staticmethod
def randn(seed: CSEVariable, offset: CSEVariable) -> str:
V.kernel.headers.add("random")
return f"c10::metal::randn({seed}, {offset})"
@staticmethod
def randint64(
seed: CSEVariable, offset: CSEVariable, low: CSEVariable, high: CSEVariable
) -> str:
V.kernel.headers.add("random")
return f"c10::metal::randint64({seed}, {offset}, {low}, {high})"
@staticmethod
def round(x: CSEVariable) -> str:
return f"metal::round({x})"
@staticmethod
def pow(a: CSEVariable, b: CSEVariable) -> str:
cast_a = f"static_cast<decltype({a}+{b})>({a})"
cast_b = f"static_cast<decltype({a}+{b})>({b})"
return f"metal::pow({cast_a}, {cast_b})"
def _special_unary(self, a: CSEVariable, name: str) -> str:
V.kernel.headers.add("special_math")
return f"c10::metal::{name}({a})"
def _special_binary(self, a: CSEVariable, b: CSEVariable, name: str) -> str:
V.kernel.headers.add("special_math")
return f"c10::metal::{name}({a}, {b})"
@classmethod
def _initialize_special_ops(cls) -> None:
# Unary special ops
for name in [
"erf",
"erfinv",
"i0",
"i0e",
"i1",
"i1e",
"digamma",
"spherical_bessel_j0",
]:
setattr(cls, name, functools.partialmethod(cls._special_unary, name=name))
cls.lgamma = functools.partialmethod(cls._special_unary, name="log_gamma") # type: ignore[assignment]
# Unary special ops with forward in method name
for name in [
"bessel_j0",
"bessel_j1",
"bessel_y0",
"bessel_y1",
"modified_bessel_i0",
"modified_bessel_i1",
"modified_bessel_k0",
"modified_bessel_k1",
"scaled_modified_bessel_k0",
"scaled_modified_bessel_k1",
]:
setattr(
cls,
name,
functools.partialmethod(cls._special_unary, name=name + "_forward"),
)
# Binary special ops
for name in [
"polygamma",
"zeta",
]:
setattr(cls, name, functools.partialmethod(cls._special_binary, name=name))
# Binary special ops with forward in method name
for name in [
"chebyshev_polynomial_t",
"chebyshev_polynomial_u",
"chebyshev_polynomial_v",
"chebyshev_polynomial_w",
"hermite_polynomial_h",
"hermite_polynomial_he",
"shifted_chebyshev_polynomial_t",
"shifted_chebyshev_polynomial_u",
"shifted_chebyshev_polynomial_v",
"shifted_chebyshev_polynomial_w",
]:
setattr(
cls,
name,
functools.partialmethod(cls._special_binary, name=name + "_forward"),
)
MetalOverrides._initialize_pointwise_overrides("mps")
MetalOverrides._initialize_special_ops()
class MetalKernel(SIMDKernel):
"""Implement Metal codegen based on the SIMDKernel abstraction"""
overrides = MetalOverrides # type: ignore[assignment]
suffix = ";"
newvar_prefix = "auto "
max_threadgroup_size = 1024
simd_group_size = 32
pexpr = PythonPrinter().doprint
cexpr = CppPrinter().doprint
sexpr = MetalExprPrinter().doprint
kexpr = sexpr
headers: OrderedSet[str] = OrderedSet(["utils"])
multistage_reduction_entry: list[IterationRangesEntry] = []
def __init__(
self,
tiling: dict[str, sympy.Expr],
**kwargs: Any,
) -> None:
super().__init__(tiling, **kwargs)
self.acc_var_ids = itertools.count()
def dtype_to_str(self, dtype: torch.dtype) -> str:
return DTYPE_TO_METAL[dtype]
def load(self, name: str, index: sympy.Expr) -> CSEVariable:
"""Codegen a load from an InputBuffer"""
var = self.args.input(name)
index = self.prepare_indexing(index)
dtype = V.graph.get_dtype(name)
line = f"{var}[{self.index_to_str(index)}]"
if dtype in [torch.float16, torch.bfloat16]:
# TODO(NS): Figure out the right balance between optype casts
# op_math_t for half-precision floats should be float32
# Otherwise it can lead to a correctness issues with eager
line = f"static_cast<float>({line})"
dtype = torch.float32
return self.cse.generate(self.loads, line, dtype=dtype)
def store(
self, name: str, index: sympy.Expr, value: CSEVariable, mode: StoreMode = None
) -> None:
var = self.args.output(name)
index = self.prepare_indexing(index)
dtype_str = self.dtype_to_str(V.graph.get_dtype(name))
cast_val = f"static_cast<{dtype_str}>({value})"
if mode is None:
line = f"{var}[{self.index_to_str(index)}] = {cast_val};"
elif mode == "atomic_add":
self.headers.add("atomic")
atomic_type = f"c10::metal::AtomicType<{dtype_str}>"
cast_var = f"reinterpret_cast<device {atomic_type}::type *>({var})"
line = f"{atomic_type}::atomic_add({cast_var}, {self.index_to_str(index)}, {cast_val});"
else:
raise RuntimeError(f"Unimplemented store mode {mode}")
if self.inside_reduction:
self.compute.writeline(DeferredLine(name, line))
else:
self.stores.writeline(DeferredLine(name, line))
def store_reduction(self, name: str, index: sympy.Expr, value: CSEVariable) -> None:
var = self.args.output(name)
index = self.prepare_indexing(index)
dtype_str = self.dtype_to_str(V.graph.get_dtype(name))
reduction_dim = next(t for t in self.range_trees if t.is_reduction)
# Only one thread in the reduction group needs to store the results
line = f"{var}[{self.index_to_str(index)}] = static_cast<{dtype_str}>({value});"
line = f"if ({reduction_dim.name} == 0) {line}"
self.stores.writeline(DeferredLine(name, line))
def _new_idxvar(
self,
dtype: Union[str | torch.dtype],
elem_count: Optional[int] = None,
default_value: Optional[Any] = None,
is_threadgroup: bool = True,
bounds: ValueRanges[Any] = ValueRanges.unknown(),
) -> CSEVariable:
if isinstance(dtype, torch.dtype):
dtype = self.dtype_to_str(dtype)
var_name = f"tmp_acc_{next(self.acc_var_ids)}"
var = V.kernel.create_cse_var(var_name, bounds, dtype)
var_def = "threadgroup " if is_threadgroup else ""
var_def += f"{dtype} {var_name}"
if elem_count:
var_def += f"[{self.sexpr(elem_count)}]"
if default_value is not None:
assert not is_threadgroup, "Thread group var can not have default value"
var_def += f" = {default_value}"
self.indexing_code.writeline(var_def + self.suffix)
return var
def reduction(
self,
dtype: torch.dtype,
src_dtype: torch.dtype,
reduction_type: ReductionType,
value: Union[CSEVariable, tuple[CSEVariable, ...]],
) -> Union[CSEVariable, tuple[CSEVariable, ...]]:
"Caching wrapper around _reduction_nocache"
cache_key = (src_dtype, reduction_type, value)
# Return cached reduction
if cache_key in self.cse.reduction_cache:
return self.cse.reduction_cache[cache_key]
result = self._reduction_nocache(dtype, src_dtype, reduction_type, value)
self.cse.reduction_cache[cache_key] = result # type: ignore[assignment]
return result
def _reduction_nocache(
self,
dtype: torch.dtype,
src_dtype: torch.dtype,
reduction_type: ReductionType,
value: Union[CSEVariable, tuple[CSEVariable, ...]],
) -> Union[CSEVariable, tuple[CSEVariable, ...]]:
"""Codegen a reduction operation.
Only sum and prod operations are somewhat reasonable optimized"""
assert self.inside_reduction
assert not self._load_mask
def _unwrap_helper(res3: CSEVariable) -> tuple[CSEVariable, ...]:
# Uwraps vec3 dtype into individual components
return OpsWrapper._unwrap(
[CSEVariable(f"{res3}.{t}", res3.bounds, res3.dtype) for t in "xyz"]
)
# Establish reduction buffer size and index expression
reduction_idx = ""
acc_buf_size = 1
for rd in self.range_trees:
if not rd.is_reduction:
continue
if reduction_idx:
reduction_idx += " + "
reduction_idx += f"{rd.name} * {acc_buf_size}"
if isinstance(rd.numel, sympy.Integer):
acc_buf_size *= rd.numel
else:
acc_buf_size *= sympy.Symbol(
f"{rd.prefix}numel", integer=True, positive=True
)
acc_buf_size = sympy.Min(acc_buf_size, self.max_threadgroup_size)
acc_buf_size_str = self.sexpr(acc_buf_size)
shmem_buf_size = (
ceildiv(acc_buf_size, self.simd_group_size)
if isinstance(acc_buf_size, sympy.Integer)
else self.simd_group_size
)
if reduction_type == "any":
acc = self._new_idxvar(dtype)
self.indexing_code.writeline(f"{acc} = false;")
self.indexing_code.writeline(
"threadgroup_barrier(metal::mem_flags::mem_threadgroup);"
)
self.compute.splice(
f"""
if ({value}) {{
{acc} = true;
}}
"""
)
self.stores.writeline(
"threadgroup_barrier(metal::mem_flags::mem_threadgroup);"
)
return acc
self.headers.add("reduction_utils")
if reduction_type in ["prod", "sum"]:
acc_dtype = DTYPE_TO_COMPUTATION_DTYPE[src_dtype]
acc_buf = self._new_idxvar(acc_dtype, shmem_buf_size)
if not self.multistage_reduction_entry:
val = value
else:
default_val, reduction_op = (
(0, "+") if reduction_type == "sum" else (1, "*")
)
val = self._new_idxvar(
acc_dtype, default_value=default_val, is_threadgroup=False
)
self.compute.splice(f"{val} {reduction_op}= {value};")
return self.cse.generate(
self.stores,
f"c10::metal::threadgroup_{reduction_type}({acc_buf}, {val}, {reduction_idx}, {acc_buf_size_str})",
dtype=DTYPE_TO_COMPUTATION_DTYPE[dtype],
)
if reduction_type in ["max", "min"]:
acc_buf = self._new_idxvar(src_dtype, shmem_buf_size)
src_metal_type = DTYPE_TO_METAL[src_dtype]
cast_value = f"static_cast<{src_metal_type}>({value})"
if not self.multistage_reduction_entry:
val = cast_value # type: ignore[assignment]
else:
lim_fn = "lowest" if reduction_type.endswith("max") else "max"
limit_val = f"::metal::numeric_limits<{src_metal_type}>::{lim_fn}()"
val = self._new_idxvar(
src_dtype, default_value=limit_val, is_threadgroup=False
)
self.compute.splice(
f"{val} = ::c10::metal::{reduction_type}({val}, {cast_value});"
)
return self.cse.generate(
self.stores,
f"c10::metal::threadgroup_{reduction_type}({acc_buf}, {val}, {reduction_idx}, {acc_buf_size_str})",
dtype=DTYPE_TO_COMPUTATION_DTYPE[dtype],
)
if reduction_type in ["argmin", "argmax"]:
data_acc_buf = self._new_idxvar(src_dtype, shmem_buf_size)
idx_acc_buf = self._new_idxvar(dtype, shmem_buf_size)
src_metal_type = DTYPE_TO_METAL[src_dtype]
cast_value = f"static_cast<{src_metal_type}>({value})"
if not self.multistage_reduction_entry:
val = cast_value # type: ignore[assignment]
idx_val = f"static_cast<{DTYPE_TO_METAL[dtype]}>({reduction_idx})"
else:
lim_fn = "lowest" if reduction_type.endswith("max") else "max"
limit_val = f"::metal::numeric_limits<{src_metal_type}>::{lim_fn}()"
val = self._new_idxvar(
src_dtype, default_value=limit_val, is_threadgroup=False
)
idx_val = self._new_idxvar(dtype, default_value=0, is_threadgroup=False) # type: ignore[assignment]
idx_var = next(
t for t in self.range_tree_nodes.values() if t.is_reduction
)
cmp_op = ">" if reduction_type == "argmax" else "<"
nan_suffix = (
f" || ::metal::isnan({value}) "
if src_dtype.is_floating_point
else ""
)
self.compute.splice(f"""
if ({value} {cmp_op} {val}{nan_suffix}) {{
{val} = {value};
{idx_val} = {idx_var.name};
}}
""")
return self.cse.generate(
self.stores,
f"c10::metal::threadgroup_{reduction_type}({data_acc_buf}, {idx_acc_buf}, "
f"{val}, {idx_val}, {reduction_idx}, {acc_buf_size_str})",
dtype=dtype,
)
if reduction_type == "welford_reduce":
if not self.multistage_reduction_entry:
acc_buf = self._new_idxvar(src_dtype, acc_buf_size)
self.compute.splice(f"{acc_buf}[{reduction_idx}] = {value};")
wf_res = self.cse.generate(
self.compute,
f"c10::metal::threadgroup_{reduction_type}({acc_buf}, {acc_buf_size_str})",
dtype=torch.float32,
)
return _unwrap_helper(wf_res)
acc_buf = self._new_idxvar("float3", acc_buf_size)
acc_thread_var = f"{acc_buf}[{reduction_idx}]"
self.indexing_code.splice(f"{acc_thread_var} = 0.0;")
self.compute.writeline(
f"{acc_thread_var} = ::c10::metal::welford_combine({acc_thread_var}, float3({value}, 0.0, 1.0));"
)
wf_res = self.cse.generate(
self.stores,
f"c10::metal::threadgroup_welford_combine({acc_buf}, {acc_buf_size})",
dtype=torch.float32,
)
return _unwrap_helper(wf_res)
if reduction_type == "welford_combine":
assert isinstance(value, tuple), "Input to welford combine must be tuple"
acc_buf = self._new_idxvar("float3", acc_buf_size)
acc_thread_var = f"{acc_buf}[{reduction_idx}]"
inp_value = f"float3({value[0]}, {value[1]}, {value[2]})"
self.indexing_code.splice(f"{acc_thread_var} = 0.0;")
if self.multistage_reduction_entry:
self.indexing_code.splice(f"{acc_thread_var} = 0.0;")
self.compute.writeline(
f"{acc_thread_var} = ::c10::metal::welford_combine({acc_thread_var}, {inp_value});"
)
else:
self.compute.writeline(f"{acc_thread_var} = {inp_value};")
wf_res = self.cse.generate(
self.stores if self.multistage_reduction_entry else self.compute,
f"c10::metal::threadgroup_{reduction_type}({acc_buf}, {acc_buf_size_str})",
dtype=torch.float32,
)
return _unwrap_helper(wf_res)
raise NotImplementedError(reduction_type)
def codegen_iteration_ranges_entry(self, entry: IterationRangesEntry) -> None:
index_expr = self.rename_indexing(entry.expr)
index_str = self.sexpr(index_expr) # type: ignore[misc]
if not entry.is_reduction or (
isinstance(entry.root.numel, sympy.Integer)
and entry.root.numel <= self.max_threadgroup_size
):
self.indexing_code.writeline(
f"{self.index_dtype} {entry.name} = {index_str};"
)
return
acc_size = (
entry.root.numel
if isinstance(entry.root.numel, sympy.Integer)
else sympy.Symbol(f"{entry.root.prefix}numel", integer=True, positive=True)
)
self.multistage_reduction_entry.append(entry)
# When reducing the tensor whose size exceeds max threadgroup size
# loop over extra indices per reduction thread and perform part of the operation
# using values in the shared memory
# Use floats so that it doesn't do integer division
loop_size = (acc_size + float(self.max_threadgroup_size - 1)) // float(
self.max_threadgroup_size
)
loop_size_str = self.sexpr(loop_size)
self.body.writeline(
f"for(auto {entry.name}_cnt = 0; {entry.name}_cnt < {loop_size_str}; ++{entry.name}_cnt) {{"
)
with self.body.indent():
if isinstance(acc_size, sympy.Symbol):
self.body.writeline(
f"{self.index_dtype} {entry.name} = {self.max_threadgroup_size} * {entry.name}_cnt + {index_str};"
)
else:
self.body.writeline(
f"{self.index_dtype} {entry.name} = {loop_size_str} * {index_str} + {entry.name}_cnt;"
)
# Check that reduction is performed only within tensor boundary
if (
isinstance(acc_size, sympy.Symbol)
or loop_size * self.max_threadgroup_size != acc_size
):
self.body.writeline(f"if ({entry.name} >= {acc_size}) break;")
def codegen_body(self) -> None:
"""
Concat output code from index_code, loads, compute, stores,
suffix into self.body.
For pointwise kernels, this is called just once at the end.
For reduction kernels, this generates a loop over the reduction
axis.
"""
if self.multistage_reduction_entry:
with self.body.indent():
self.body.splice(self.loads)
self.body.splice(self.compute)
self.body.writeline("}" * len(self.multistage_reduction_entry))
# Invalidate variables instantiated inside loop
# But results of reduction alive. Reduction cache values can be
# either CSEVariable or tuple of CSEVariables, in which case all
# variables in the tuple must be preserved
self.cse.invalidate(
OrderedSet(
v
for item in self.cse.reduction_cache.values()
for v in (item if isinstance(item, tuple) else (item,))
)
)
# And loop codegen
while self.multistage_reduction_entry:
self.multistage_reduction_entry.pop().cache_clear()
else:
self.body.splice(self.loads)
self.body.splice(self.compute)
self.body.splice(self.stores)
self.loads.clear()
self.compute.clear()
self.stores.clear()
def codegen_kernel(self, name: Optional[str] = None) -> str:
"""Called at the end to generate a final kernel string"""
self.codegen_body()
code = IndentedBuffer()
if V.graph.cpp_wrapper:
code.writeline('(R"MTL(')
else:
code.writeline("compile_mps_shader('''")
idx_vars = self.active_range_trees()
with code.indent():
if not V.graph.cpp_wrapper:
for header in self.headers:
code.writeline(f"#include <c10/metal/{header}.h>")
else:
headers = [
f"#include <c10/metal/{header}.h>" for header in self.headers
]
header_contents = _embed_headers(
headers,
[Path(__file__).parent.parent.parent / "include"],
OrderedSet(), # type: ignore[arg-type]
)
code.writeline(header_contents)
if self.inside_reduction:
total_reduction_size = math.prod(
t.numel for t in self.range_trees if t.is_reduction
)
# If using dynamic shapes, set the threadgroup size to be the
# max possible size
threadgroup_size = (
min(total_reduction_size, self.max_threadgroup_size)
if isinstance(total_reduction_size, sympy.Integer)
else self.max_threadgroup_size
)
code.writeline(
f"[[max_total_threads_per_threadgroup({threadgroup_size})]]"
)
code.writeline("kernel void generated_kernel(")
with code.indent():
for outer, inner in self.args.output_buffers.items():
if outer in self.removed_buffers:
continue
dtype_str = self.dtype_to_str(V.graph.get_dtype(outer))
code.writeline(f"device {dtype_str}* {inner},")
for outer, inner in self.args.input_buffers.items():
dtype = V.graph.get_dtype(outer)
# MPS does not support float64, but scalar inputs are fine
if dtype == torch.float64:
outer_buf = V.graph.try_get_buffer(outer)
if outer_buf is None or outer_buf.get_size() != []:
raise RuntimeError("float64 is not supported by MPS")
dtype_str = "float"
else:
dtype_str = self.dtype_to_str(dtype)
code.writeline(f"constant {dtype_str}* {inner},")
for outer, inner in self.args.sizevars.items():
code.writeline(f"constant long& {inner},")
# Write dynamic values as inputs
for idx_var in idx_vars:
if isinstance(idx_var.numel, sympy.Integer):
pass
else:
code.writeline(f"constant long& {idx_var.prefix}numel,")
assert len(idx_vars) < 4, "Up to 3 index variables are supported"
thread_pos_dtype = (
f"uint{len(idx_vars)}" if len(idx_vars) > 1 else "uint"
)
thread_pos_var_name = (
idx_vars[0].name if len(idx_vars) == 1 else "thread_pos"
)
thread_pos_suffix = "," if self.inside_reduction else ""
code.writeline(
f"{thread_pos_dtype} {thread_pos_var_name} [[thread_position_in_grid]]{thread_pos_suffix}"
)
if self.inside_reduction:
code.writeline(
f"{thread_pos_dtype} group_pos [[thread_position_in_threadgroup]]"
)
code.writeline(") {")
with code.indent():
if len(idx_vars) > 1:
for idx, var in enumerate(idx_vars):
code.writeline(
f"auto {var.name} = thread_pos.{chr(120 + idx)};"
)
code.splice(self.indexing_code)
code.splice(self.body)
code.writeline("}")
if V.graph.cpp_wrapper:
code.writeline(')MTL");')
else:
code.writeline("''')")
return code.getvalue()
def call_kernel(self, name: str, node: Any = None) -> None:
"""
Codegens a call to this kernel
"""
wrapper = V.graph.wrapper_code
# Make sure sizevars has been computed
for v in self.args.sizevars.keys():
wrapper.ensure_size_computed(v)
_, call_args, _, arg_types = self.args.python_argdefs()
arg_name_to_type = {
str(call_arg): arg_type for call_arg, arg_type in zip(call_args, arg_types)
}
args = [*self.args.output_buffers.keys(), *self.args.input_buffers.keys()]
args = [arg for arg in args if arg not in self.removed_buffers]
args += [str(v) for v in self.args.sizevars.keys()]
arg_types = [arg_name_to_type[arg] for arg in args]
# Add any dynamic ints as inputs
for tree in self.range_trees:
if isinstance(tree.numel, (sympy.Integer, int)):
# Don't need to pass in integers as inputs
continue
elif isinstance(tree.numel, sympy.Symbol):
expr = tree.numel
else:
expr = V.graph.wrapper_code.generate_numel_expr(name, tree).inner
if not tree.is_reduction or self.inside_reduction:
args.append(str(expr))
arg_types.append(int)
expr_printer = self.cexpr if V.graph.cpp_wrapper else self.pexpr
def format_threads(threads: list[str], kwarg: str) -> str:
if V.graph.cpp_wrapper:
threads = [f"static_cast<uint64_t>({t})" for t in threads]
return f"{{{', '.join(threads)}}}"
else:
return f"{kwarg}=[{', '.join(threads)}]"
# For reduction kernels, limit the maximum size over reduction dimensions to
# a maximum threadgroup size
if len(self.active_range_trees()) > 0:
threads = [
expr_printer(
sympy.Min(v.numel, self.max_threadgroup_size) # type: ignore[misc]
if v.is_reduction
else v.numel
)
for v in self.active_range_trees()
]
args.append(format_threads(threads, "threads"))
arg_types.append(list)
else:
if V.graph.cpp_wrapper:
raise RuntimeError("We should always have threads?")
if self.inside_reduction:
threads = [
expr_printer(sympy.Min(v.numel, self.max_threadgroup_size)) # type: ignore[misc]
if v.is_reduction
else "1"
for v in self.active_range_trees()
]
args.append(format_threads(threads, "group_size"))
arg_types.append(list)
else:
if V.graph.cpp_wrapper:
# Add a None so that we always have a group_size in the
# arguments. We won't use it if the value is None.
args += [None] # type: ignore[list-item]
arg_types.append(None)
wrapper.generate_kernel_call(
name,
args,
device=torch.device("mps"),
triton=False,
arg_types=arg_types,
)
def check_bounds(
self, expr: sympy.Expr, size: sympy.Expr, lower: bool, upper: bool
) -> None:
if not (lower or upper):
return
# TODO(malfet): support asserts
# See https://github.com/pytorch/pytorch/issues/144634
expr_str = self.index_to_str(expr)
lower_expr = f"{expr_str} < 0" if lower else ""
# TODO(malfet): Is upper bound inclusive or exclusive?
upper_expr = f"{expr_str} > {self.index_to_str(size)}" if upper else ""
if lower and upper:
line = f"if (({lower_expr}) && ({upper_expr})) return"
else:
line = f"if ({lower_expr}{upper_expr}) return"
self.cse.generate(self.compute, line, assignment=False)
class MetalScheduling(SIMDScheduling):
kernel_type = MetalKernel # type: ignore[assignment]
def __init__(self, scheduler: Optional[Scheduler]) -> None:
super().__init__(scheduler)
wrapper = V.graph.wrapper_code
if wrapper is not None:
if not V.graph.cpp_wrapper:
wrapper.header.splice(
"from torch._inductor.runtime.runtime_utils import compile_mps_shader"
)
def define_kernel(
self, src_code: str, node_schedule: list[SchedulerNode], kernel: MetalKernel
) -> str:
wrapper = V.graph.wrapper_code
if src_code in wrapper.src_to_kernel:
kernel_name = wrapper.src_to_kernel[src_code]
else:
# TODO: Merge multiple kernels into a single library
# Either using MultiKernel concept or overriding SIMDScheduling.codegen_node_scheduling
mps_lib_name = f"mps_lib_{wrapper.next_kernel_suffix()}"
kernel_name = f"{mps_lib_name}"
wrapper.src_to_kernel[src_code] = kernel_name
if V.graph.cpp_wrapper:
src_code = (
f"at::native::mps::DynamicMetalShaderLibrary {mps_lib_name}"
+ src_code
)
origins, detailed_origins = get_kernel_metadata(node_schedule, wrapper)
metadata_comment = f"{origins}\n{detailed_origins}"
wrapper.define_kernel(mps_lib_name, src_code, metadata_comment, gpu=False)
return kernel_name