mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-06 00:20:18 +01:00
Pull Request resolved: https://github.com/pytorch/pytorch/pull/133373 Approved by: https://github.com/yanboliang
961 lines
30 KiB
Python
961 lines
30 KiB
Python
# Owner(s): ["module: inductor"]
|
|
# flake8: noqa: B950
|
|
|
|
import functools
|
|
from collections import namedtuple
|
|
from typing import Callable, Optional
|
|
from unittest import expectedFailure, skipUnless
|
|
from unittest.mock import patch
|
|
|
|
import torch
|
|
from torch._inductor.test_case import TestCase as InductorTestCase
|
|
from torch._inductor.utils import run_and_get_code
|
|
from torch.nn.attention.flex_attention import (
|
|
_create_empty_block_mask,
|
|
_identity,
|
|
create_block_mask,
|
|
flex_attention,
|
|
)
|
|
from torch.testing import FileCheck
|
|
from torch.testing._internal import common_utils
|
|
from torch.testing._internal.common_cuda import PLATFORM_SUPPORTS_BF16
|
|
from torch.utils._triton import has_triton
|
|
|
|
|
|
# Skip tests if Triton is not available
|
|
supported_platform = skipUnless(
|
|
torch.cuda.is_available()
|
|
and has_triton()
|
|
and torch.cuda.get_device_capability() >= (8, 0),
|
|
"Requires CUDA and Triton",
|
|
)
|
|
|
|
Tolerances = namedtuple("Tolerances", ["atol", "rtol"])
|
|
torch.set_float32_matmul_precision("high")
|
|
|
|
index = torch.ops.aten.index
|
|
Tensor = torch.Tensor
|
|
|
|
|
|
def create_attention(score_mod, block_mask, enable_gqa=False):
|
|
return functools.partial(
|
|
flex_attention,
|
|
score_mod=score_mod,
|
|
block_mask=block_mask,
|
|
enable_gqa=enable_gqa,
|
|
)
|
|
|
|
|
|
def create_block_mask_test(score_mod, query, key):
|
|
block_mask = create_block_mask(
|
|
score_mod, 1, 1, query.shape[-2], key.shape[-2], query.device
|
|
)
|
|
return block_mask
|
|
|
|
|
|
test_dtypes = (
|
|
[torch.float16, torch.bfloat16, torch.float32]
|
|
if PLATFORM_SUPPORTS_BF16
|
|
else [torch.float16, torch.float32]
|
|
)
|
|
|
|
test_dtypes_fast = [torch.float16]
|
|
|
|
|
|
# --------- Useful score mod functions for testing ---------
|
|
def _causal(
|
|
score: Tensor,
|
|
batch: Tensor,
|
|
head: Tensor,
|
|
token_q: Tensor,
|
|
token_kv: Tensor,
|
|
) -> Tensor:
|
|
return torch.where(token_q >= token_kv, score, float("-inf"))
|
|
|
|
|
|
def _generate_windowed(offset):
|
|
def _windowed(score, b, h, q, kv):
|
|
return torch.where(q + offset >= kv, score, float("-inf"))
|
|
|
|
return _windowed
|
|
|
|
|
|
def _get_windowed_sdpa_mask(Mq, Mkv, offset):
|
|
return torch.tril(torch.ones(Mkv, Mkv, dtype=torch.bool, device="cuda"))[
|
|
offset : offset + Mq
|
|
]
|
|
|
|
|
|
def _rel_bias(
|
|
score: Tensor,
|
|
batch: Tensor,
|
|
head: Tensor,
|
|
token_q: Tensor,
|
|
token_kv: Tensor,
|
|
) -> Tensor:
|
|
return score + (token_q - token_kv)
|
|
|
|
|
|
def _rel_causal(
|
|
score: Tensor,
|
|
batch: Tensor,
|
|
head: Tensor,
|
|
token_q: Tensor,
|
|
token_kv: Tensor,
|
|
) -> Tensor:
|
|
return torch.where(token_q >= token_kv, score + (token_q - token_kv), float("-inf"))
|
|
|
|
|
|
def _generate_alibi_bias(num_heads: int):
|
|
def _alibi_bias(
|
|
score: Tensor,
|
|
batch: Tensor,
|
|
head: Tensor,
|
|
token_q: Tensor,
|
|
token_kv: Tensor,
|
|
) -> Tensor:
|
|
scale = torch.exp2(-((head + 1) * 8.0 / num_heads))
|
|
return score + (token_kv - token_q) * scale
|
|
|
|
return _alibi_bias
|
|
|
|
|
|
def _inverse_causal(score, b, h, m, n):
|
|
return torch.where(m <= n, score, float("-inf"))
|
|
|
|
|
|
def _times_two(score, b, h, m, n):
|
|
"""Joint graph needed for correctness"""
|
|
return score * 2
|
|
|
|
|
|
def _squared(score, b, h, m, n):
|
|
"""Joint graph needed for correctness"""
|
|
return score * score
|
|
|
|
|
|
def _head_offset(dtype: torch.dtype):
|
|
"""Captured Buffer"""
|
|
head_offset = torch.rand(Hq, device="cuda", dtype=dtype)
|
|
|
|
def score_mod(score, b, h, m, n):
|
|
return score * head_offset[h]
|
|
|
|
return score_mod
|
|
|
|
|
|
def _trig(score, b, h, m, n):
|
|
"""Joint graph needed for correctness"""
|
|
return torch.sin(torch.cos(score)) + torch.tan(b)
|
|
|
|
|
|
def _trig2(score, b, h, m, n):
|
|
"""Branching joint graph"""
|
|
cos_score = torch.cos(score)
|
|
sin_score = torch.sin(score)
|
|
z = cos_score * sin_score + torch.tan(b)
|
|
return z
|
|
|
|
|
|
test_score_mods = [
|
|
_identity,
|
|
_times_two,
|
|
_squared,
|
|
_causal,
|
|
_inverse_causal,
|
|
_rel_bias,
|
|
_rel_causal,
|
|
_generate_alibi_bias(8),
|
|
_generate_windowed(1000),
|
|
]
|
|
|
|
captured_buffers_map = {
|
|
"_head_offset": _head_offset,
|
|
}
|
|
|
|
B = 4
|
|
S = 2048
|
|
D = 64
|
|
|
|
|
|
test_Hq_Hkv = [
|
|
(16, 1),
|
|
(8, 2),
|
|
(16, 16),
|
|
]
|
|
|
|
(Hq, Hkv) = (16, 8)
|
|
|
|
|
|
def query_key_value_clones(
|
|
query: torch.Tensor,
|
|
key: torch.Tensor,
|
|
value: torch.Tensor,
|
|
dtype: torch.dtype = None,
|
|
):
|
|
"""Clones the query, key, and value tensors and moves them to the specified dtype."""
|
|
if dtype is None:
|
|
dtype = query.dtype
|
|
query_ref = query.clone().detach().to(dtype).requires_grad_(query.requires_grad)
|
|
key_ref = key.clone().detach().to(dtype).requires_grad_(key.requires_grad)
|
|
value_ref = value.clone().detach().to(dtype).requires_grad_(value.requires_grad)
|
|
return query_ref, key_ref, value_ref
|
|
|
|
|
|
class TestFlexDecoding(InductorTestCase):
|
|
def _check_equal(
|
|
self,
|
|
golden_out: torch.Tensor,
|
|
ref_out: torch.Tensor,
|
|
compiled_out: torch.Tensor,
|
|
fudge_factor: float,
|
|
tensor_name: Optional[str] = None,
|
|
):
|
|
compiled_error = (golden_out - compiled_out).abs().mean()
|
|
ref_error = (golden_out - ref_out).abs().mean()
|
|
if torch.isnan(compiled_error).any() and not torch.isnan(ref_error).any():
|
|
self.assertTrue(False, "Output/Grad with NaN")
|
|
if ref_error < (1e-4) * golden_out.abs().mean():
|
|
print(
|
|
"very small ref error of ",
|
|
(ref_error.to(torch.float64) * (1e5) / golden_out.abs().mean()),
|
|
)
|
|
tolerance = Tolerances(atol=2e-1, rtol=2e-1)
|
|
torch.testing.assert_close(
|
|
golden_out.to(dtype=compiled_out.dtype),
|
|
compiled_out,
|
|
atol=tolerance.atol,
|
|
rtol=tolerance.rtol,
|
|
)
|
|
elif compiled_error > ref_error * fudge_factor:
|
|
name = tensor_name if tensor_name is not None else ""
|
|
msg = f"{name} Compiled error {compiled_error} is greater than ref error {ref_error} by more than {fudge_factor}X."
|
|
self.assertTrue(False, msg)
|
|
|
|
def _check_out(
|
|
self,
|
|
golden_out: torch.Tensor,
|
|
ref_out: torch.Tensor,
|
|
compiled_out: torch.Tensor,
|
|
):
|
|
dtype = ref_out.dtype
|
|
with torch.no_grad():
|
|
# Note, it seems like we really are less accurate than the float32
|
|
# computation, likely due to the online softmax
|
|
if dtype == torch.float32:
|
|
fudge_factor = 10.0
|
|
else:
|
|
fudge_factor = 1.1
|
|
|
|
# Checkout output
|
|
self._check_equal(golden_out, ref_out, compiled_out, fudge_factor, "Out")
|
|
|
|
def run_test(
|
|
self,
|
|
score_mod: Callable,
|
|
dtype: torch.dtype = torch.float16,
|
|
Q_B: int = B,
|
|
Q_H: int = Hq,
|
|
Q_S: int = 1,
|
|
Q_D: int = D,
|
|
KV_B: int = B,
|
|
KV_H: int = Hkv,
|
|
KV_S: int = S,
|
|
KV_D: int = D,
|
|
):
|
|
assert Q_H % KV_H == 0
|
|
q = torch.randn(
|
|
(Q_B, Q_H, Q_S, Q_D),
|
|
dtype=dtype,
|
|
device="cuda",
|
|
requires_grad=False,
|
|
)
|
|
k = torch.randn(
|
|
(KV_B, KV_H, KV_S, KV_D), dtype=dtype, device="cuda", requires_grad=False
|
|
)
|
|
v = torch.randn(
|
|
(KV_B, KV_H, KV_S, KV_D), dtype=dtype, device="cuda", requires_grad=False
|
|
)
|
|
q_ref, k_ref, v_ref = query_key_value_clones(q, k, v)
|
|
q_gold, k_gold, v_gold = query_key_value_clones(q, k, v, torch.float64)
|
|
|
|
block_mask = None
|
|
sdpa_partial = create_attention(
|
|
score_mod, block_mask, enable_gqa=(not Q_H == KV_H)
|
|
)
|
|
compiled_sdpa = torch.compile(sdpa_partial)
|
|
golden_out, gold_lse = sdpa_partial(q_gold, k_gold, v_gold, return_lse=True)
|
|
ref_out, ref_lse = sdpa_partial(q_ref, k_ref, v_ref, return_lse=True)
|
|
compiled_out, compiled_lse = compiled_sdpa(q, k, v, return_lse=True)
|
|
|
|
self._check_out(
|
|
golden_out,
|
|
ref_out,
|
|
compiled_out,
|
|
)
|
|
self._check_out(
|
|
gold_lse,
|
|
ref_lse,
|
|
compiled_lse,
|
|
)
|
|
|
|
def run_test_with_call(
|
|
self,
|
|
sdpa_call: Callable,
|
|
golden_call: Optional[Callable] = None,
|
|
dtype: torch.dtype = torch.float16,
|
|
Q_B: int = B,
|
|
Q_H: int = Hq,
|
|
Q_S: int = 1,
|
|
Q_D: int = D,
|
|
KV_B: int = B,
|
|
KV_H: int = Hkv,
|
|
KV_S: int = S,
|
|
KV_D: int = D,
|
|
):
|
|
if not golden_call:
|
|
golden_call = sdpa_call
|
|
q = torch.randn(
|
|
(Q_B, KV_H, Q_S * (Q_H // KV_H), Q_D),
|
|
dtype=dtype,
|
|
device="cuda",
|
|
requires_grad=False,
|
|
)
|
|
k = torch.randn(
|
|
(KV_B, KV_H, KV_S, KV_D), dtype=dtype, device="cuda", requires_grad=False
|
|
)
|
|
v = torch.randn(
|
|
(KV_B, KV_H, KV_S, KV_D), dtype=dtype, device="cuda", requires_grad=False
|
|
)
|
|
q_ref, k_ref, v_ref = query_key_value_clones(q, k, v)
|
|
q_gold, k_gold, v_gold = query_key_value_clones(q, k, v, torch.float64)
|
|
|
|
compiled_sdpa = torch.compile(sdpa_call)
|
|
golden_out = golden_call(q_gold, k_gold, v_gold)
|
|
ref_out = golden_call(q_ref, k_ref, v_ref)
|
|
compiled_out = compiled_sdpa(q, k, v)
|
|
|
|
self._check_out(
|
|
golden_out,
|
|
ref_out,
|
|
compiled_out,
|
|
)
|
|
|
|
@supported_platform
|
|
@expectedFailure
|
|
@common_utils.parametrize("dtype", test_dtypes_fast)
|
|
def test_bw_decoding_fails(self, dtype):
|
|
make_kv = functools.partial(
|
|
torch.randn,
|
|
(2, 2, 128, 4),
|
|
dtype=dtype,
|
|
device="cuda",
|
|
requires_grad=True,
|
|
)
|
|
make_q = functools.partial(
|
|
torch.randn,
|
|
(2, 2, 8, 4),
|
|
dtype=dtype,
|
|
device="cuda",
|
|
requires_grad=True,
|
|
)
|
|
q, k, v, backward_grad = make_q(), make_kv(), make_kv(), make_q()
|
|
|
|
block_mask = _create_empty_block_mask(q, k)
|
|
|
|
@torch.compile
|
|
def sdpa_hop(q, k, v, score_mod, block_mask):
|
|
return flex_attention(q, k, v, score_mod)
|
|
|
|
output = sdpa_hop(q, k, v, _identity, block_mask)
|
|
|
|
output.backward(backward_grad)
|
|
|
|
@supported_platform
|
|
@common_utils.parametrize("dtype", test_dtypes)
|
|
@common_utils.parametrize("score_mod", test_score_mods)
|
|
@common_utils.parametrize("head_dims", test_Hq_Hkv)
|
|
def test_builtin_score_mods(
|
|
self, dtype: torch.dtype, score_mod: Callable, head_dims
|
|
):
|
|
Hq, Hkv = head_dims
|
|
assert Hq % Hkv == 0
|
|
self.run_test(score_mod, dtype, Q_H=Hq, KV_H=Hkv)
|
|
|
|
def input_strides_1(B, H, S, D):
|
|
return ((H * S * D, S * D, D, 1), 997) # offset
|
|
|
|
def input_strides_2(B, H, S, D):
|
|
return ((H * D, D, B * H * D, 1), 499) # transposed dimensions
|
|
|
|
def input_strides_3(B, H, S, D):
|
|
return ((S * (D + 1), B * S * (D + 1), (D + 1), 1), 293) # additional buffer
|
|
|
|
def input_strides_4(B, H, S, D):
|
|
return ((1, D, (B + 1) * (H + 1) * D, 1), 97) # shared dimension
|
|
|
|
test_input_strides = [
|
|
input_strides_1,
|
|
input_strides_2,
|
|
input_strides_3,
|
|
input_strides_4,
|
|
]
|
|
|
|
@supported_platform
|
|
@common_utils.parametrize("dtype", test_dtypes_fast)
|
|
@common_utils.parametrize("k_s", test_input_strides)
|
|
@common_utils.parametrize("v_s", test_input_strides)
|
|
@common_utils.parametrize("head_dims", test_Hq_Hkv)
|
|
def test_strided_inputs(self, dtype: torch.dtype, k_s, v_s, head_dims):
|
|
Hq, Hkv = head_dims
|
|
assert Hq % Hkv == 0
|
|
q1 = torch.randn((B * Hq * D), dtype=dtype, device="cuda")
|
|
k1 = torch.randn((B * Hkv * S * D * 4), dtype=dtype, device="cuda")
|
|
v1 = torch.randn((B * Hkv * S * D * 4), dtype=dtype, device="cuda")
|
|
|
|
k_shape = (B, Hkv, S, D)
|
|
v_shape = (B, Hkv, S, D)
|
|
|
|
q = q1.view(1, Hq, B, D).transpose(0, 2)
|
|
|
|
k_strides, k_offset = k_s(B, Hkv, S, D)
|
|
k_max = [x * (y - 1) for x, y in zip(k_strides, k_shape)]
|
|
assert sum(k_max) + k_offset < B * Hkv * S * D * 4
|
|
assert k_strides[-1] == 1
|
|
k = torch.as_strided(k1, k_shape, k_strides, k_offset)
|
|
|
|
v_strides, v_offset = v_s(B, Hkv, S, D)
|
|
v_max = [x * (y - 1) for x, y in zip(v_strides, v_shape)]
|
|
assert sum(v_max) + v_offset < B * Hkv * S * D * 4
|
|
assert v_strides[-1] == 1
|
|
v = torch.as_strided(v1, v_shape, v_strides, v_offset)
|
|
|
|
sdpa_partial = create_attention(
|
|
score_mod=_generate_alibi_bias(8),
|
|
block_mask=None,
|
|
enable_gqa=(not Hq == Hkv),
|
|
)
|
|
compiled_sdpa = torch.compile(sdpa_partial)
|
|
ref_out = sdpa_partial(q, k, v)
|
|
compiled_out = compiled_sdpa(q, k, v)
|
|
|
|
tolerance = Tolerances(atol=2e-1, rtol=2e-1)
|
|
torch.testing.assert_close(
|
|
ref_out, compiled_out, atol=tolerance.atol, rtol=tolerance.rtol
|
|
)
|
|
|
|
@supported_platform
|
|
@common_utils.parametrize("dtype", test_dtypes)
|
|
def test_skip_odd_keys(self, dtype: torch.dtype):
|
|
def score_mod(score, b, h, q, kv):
|
|
return torch.where(kv % 2 == 0, score, float("-inf"))
|
|
|
|
self.run_test(score_mod, dtype)
|
|
|
|
@supported_platform
|
|
@common_utils.parametrize("dtype", test_dtypes)
|
|
def test_function_composition(self, dtype: torch.dtype):
|
|
def score_mod_1(score, b, h, m, n):
|
|
return score + (m - n)
|
|
|
|
def score_mod_2(score, b, h, m, n):
|
|
return torch.where(m <= n, score, float("-inf"))
|
|
|
|
def composed_score_mod(score, b, h, m, n):
|
|
return score_mod_2(score_mod_1(score, b, h, m, n), b, h, m, n)
|
|
|
|
self.run_test(composed_score_mod, dtype)
|
|
|
|
@supported_platform
|
|
@common_utils.parametrize("dtype", test_dtypes)
|
|
def test_captured_buffers(self, dtype: torch.dtype):
|
|
head_offset = torch.rand(Hq, device="cuda", dtype=dtype)
|
|
|
|
def score_mod(score, b, h, m, n):
|
|
return score + head_offset[h]
|
|
|
|
self.run_test(score_mod, dtype)
|
|
|
|
@supported_platform
|
|
@common_utils.parametrize("dtype", test_dtypes)
|
|
def test_captured_buffers_all_dims(self, dtype: torch.dtype):
|
|
head_scale = torch.randn(Hq, device="cuda")
|
|
batch_scale = torch.randn(B, device="cuda")
|
|
kv_scale = torch.randn(S, device="cuda")
|
|
q_scale = torch.randn(1, device="cuda")
|
|
|
|
def all_bias(score, batch, head, token_q, token_kv):
|
|
score = score + kv_scale[token_kv]
|
|
score = score + q_scale[token_q]
|
|
score = score + head_scale[head]
|
|
score = score + batch_scale[batch]
|
|
return score
|
|
|
|
self.run_test(all_bias, dtype)
|
|
|
|
@supported_platform
|
|
@common_utils.parametrize("dtype", test_dtypes_fast)
|
|
def test_seq_masking(self, dtype):
|
|
seq_idx = torch.zeros(S, device="cuda", dtype=torch.bool)
|
|
seq_idx[S // 2 :] = 1
|
|
|
|
def seq_mask_mod(score, b, h, q, kv):
|
|
return torch.where(seq_idx[q] == seq_idx[kv], score, float("-inf"))
|
|
|
|
self.run_test(seq_mask_mod, dtype)
|
|
|
|
@supported_platform
|
|
@common_utils.parametrize("dtype", test_dtypes_fast)
|
|
def test_load_from_bias_seq_only(self, dtype):
|
|
bias = torch.randn(1, S, device="cuda", dtype=dtype)
|
|
|
|
def bias_mod(score, b, h, q, kv):
|
|
return score + bias[q, kv]
|
|
|
|
self.run_test(bias_mod, dtype)
|
|
|
|
@supported_platform
|
|
@common_utils.parametrize("dtype", test_dtypes_fast)
|
|
def test_load_from_bias_seq_batch(self, dtype):
|
|
bias = torch.randn(B, 1, S, device="cuda", dtype=dtype)
|
|
|
|
def bias_mod(score, b, h, q, kv):
|
|
return score + bias[b, q, kv]
|
|
|
|
self.run_test(bias_mod, dtype)
|
|
|
|
@supported_platform
|
|
@common_utils.parametrize("dtype", test_dtypes_fast)
|
|
def test_load_from_bias_head_seq_batch(self, dtype):
|
|
bias = torch.randn(
|
|
B,
|
|
Hq,
|
|
1,
|
|
S,
|
|
device="cuda",
|
|
dtype=dtype,
|
|
)
|
|
|
|
def bias_mod(score, b, h, q, kv):
|
|
return score + bias[b, h, q, kv]
|
|
|
|
self.run_test(bias_mod, dtype)
|
|
|
|
@supported_platform
|
|
@common_utils.parametrize("dtype", test_dtypes_fast)
|
|
def test_subgraph_respect_decompostion(self, dtype):
|
|
from torch._decomp import core_aten_decompositions
|
|
from torch.fx.experimental.proxy_tensor import make_fx
|
|
|
|
def score_mod_func(score, b, h, q, kv):
|
|
return score - q // (1 + kv)
|
|
|
|
make_kv = functools.partial(
|
|
torch.randn,
|
|
(2, 2, 128, 4),
|
|
dtype=dtype,
|
|
device="cuda",
|
|
requires_grad=True,
|
|
)
|
|
make_q = functools.partial(
|
|
torch.randn,
|
|
(2, 2, 8, 4),
|
|
dtype=dtype,
|
|
device="cuda",
|
|
requires_grad=True,
|
|
)
|
|
query, key, value = make_q(), make_kv(), make_kv()
|
|
# floor_div is not decomposed in decompostion_table is empty
|
|
attention = functools.partial(flex_attention, score_mod=score_mod_func)
|
|
gm = make_fx(attention, decomposition_table={})(query, key, value)
|
|
self.assertExpectedInline(
|
|
gm.sdpa_score0.code.strip(),
|
|
"""\
|
|
def forward(self, arg0_1, arg1_1, arg2_1, arg3_1, arg4_1):
|
|
add = torch.ops.aten.add.Tensor(arg4_1, 1); arg4_1 = None
|
|
floor_divide = torch.ops.aten.floor_divide.default(arg3_1, add); arg3_1 = add = None
|
|
sub = torch.ops.aten.sub.Tensor(arg0_1, floor_divide); arg0_1 = floor_divide = None
|
|
return sub""",
|
|
)
|
|
|
|
# floor_div is decomposed for core_aten_decompositions
|
|
gm = make_fx(attention, decomposition_table=core_aten_decompositions())(
|
|
query, key, value
|
|
)
|
|
self.assertExpectedInline(
|
|
gm.sdpa_score0.code.strip(),
|
|
"""\
|
|
def forward(self, arg0_1, arg1_1, arg2_1, arg3_1, arg4_1):
|
|
add = torch.ops.aten.add.Tensor(arg4_1, 1); arg4_1 = None
|
|
div = torch.ops.aten.div.Tensor_mode(arg3_1, add, rounding_mode = 'floor'); arg3_1 = add = None
|
|
sub = torch.ops.aten.sub.Tensor(arg0_1, div); arg0_1 = div = None
|
|
return sub""",
|
|
)
|
|
|
|
@supported_platform
|
|
@common_utils.parametrize("dtype", test_dtypes_fast)
|
|
def test_silu_on_score(self, dtype):
|
|
def silu_score(score, b, h, q, kv):
|
|
return torch.nn.functional.silu(score)
|
|
|
|
self.run_test(silu_score, dtype)
|
|
|
|
@supported_platform
|
|
@common_utils.parametrize("dtype", test_dtypes_fast)
|
|
def test_padded_dense_causal(self, dtype):
|
|
seq_len = torch.arange(B, device="cuda", dtype=torch.int32) + 1
|
|
|
|
def create_padded_dense_wrapper(orig_score_mod):
|
|
def njt_score_mod(qk, b, h, q, kv):
|
|
return torch.where(
|
|
qk <= seq_len[b], orig_score_mod(qk, b, h, q, kv), -float("inf")
|
|
)
|
|
|
|
return njt_score_mod
|
|
|
|
causal_njt = create_padded_dense_wrapper(_causal)
|
|
|
|
self.run_test(causal_njt, dtype)
|
|
|
|
@supported_platform
|
|
@common_utils.parametrize("dtype", test_dtypes_fast)
|
|
def test_captured_scale(self, dtype):
|
|
scale = torch.ones((), device="cuda", dtype=torch.int32)
|
|
|
|
def score_mod_scale(qk, b, h, q, kv):
|
|
return qk + scale
|
|
|
|
self.run_test(score_mod_scale, dtype)
|
|
|
|
@supported_platform
|
|
@common_utils.parametrize("dtype", test_dtypes_fast)
|
|
def test_recompile_changed_score_mod(self, dtype):
|
|
scale = torch.ones((), device="cuda", dtype=torch.int32)
|
|
ADD = True
|
|
|
|
def score_mod_scale(qk, b, h, q, kv):
|
|
if ADD:
|
|
return qk + scale
|
|
else:
|
|
return qk * scale
|
|
|
|
self.run_test(score_mod_scale, dtype)
|
|
ADD = False
|
|
self.run_test(score_mod_scale, dtype)
|
|
|
|
@supported_platform
|
|
@expectedFailure # If we capture a tensor then we can perform a reduction on it, and that shouldn't be allowed
|
|
@common_utils.parametrize("dtype", test_dtypes_fast)
|
|
def test_captured_reduction(self, dtype):
|
|
scale = torch.randn((B, 8), device="cuda")
|
|
|
|
def score_mod_scale(qk, b, h, q, kv):
|
|
return qk + scale[b].sum(dim=-1)
|
|
|
|
self.run_test(score_mod_scale, dtype)
|
|
|
|
@supported_platform
|
|
def test_multiple_score_mod_calls(self):
|
|
query = torch.randn((1, 8, 4, 64), dtype=torch.float32, device="cuda")
|
|
keys = [
|
|
torch.randn((1, 8, 1024, 64), dtype=torch.float32, device="cuda")
|
|
for _ in range(2)
|
|
]
|
|
values = [
|
|
torch.randn((1, 8, 1024, 64), dtype=torch.float32, device="cuda")
|
|
for _ in range(2)
|
|
]
|
|
|
|
def scoremod_1(qk, b, h, q, kv):
|
|
return qk + (q - kv)
|
|
|
|
def scoremod_2(qk, b, h, q, kv):
|
|
return torch.where(q >= kv, qk, -float("inf"))
|
|
|
|
def f(q, k1, k2, v1, v2):
|
|
q2 = flex_attention(q, k1, v1, score_mod=scoremod_1)
|
|
return flex_attention(q2, k2, v2, score_mod=scoremod_2)
|
|
|
|
out = f(query, *keys, *values)
|
|
out2 = torch.compile(f)(query, *keys, *values)
|
|
tolerance = Tolerances(atol=2e-1, rtol=2e-1)
|
|
torch.testing.assert_close(out, out2, atol=tolerance.atol, rtol=tolerance.rtol)
|
|
|
|
@supported_platform
|
|
def test_multiple_score_mod_calls2(self):
|
|
query = torch.randn((1, 8, 4, 64), dtype=torch.float32, device="cuda")
|
|
keys = [
|
|
torch.randn((1, 8, 1024, 64), dtype=torch.float32, device="cuda")
|
|
for _ in range(3)
|
|
]
|
|
values = [
|
|
torch.randn((1, 8, 1024, 64), dtype=torch.float32, device="cuda")
|
|
for _ in range(3)
|
|
]
|
|
|
|
def scoremod_1(qk, b, h, q, kv):
|
|
return qk + (q - kv)
|
|
|
|
def scoremod_2(qk, b, h, q, kv):
|
|
return torch.where(q >= kv, qk, -float("inf"))
|
|
|
|
attention1 = functools.partial(flex_attention, score_mod=scoremod_1)
|
|
|
|
def f(q, k1, k2, k3, v1, v2, v3):
|
|
q2 = attention1(q, k1, v1)
|
|
q3 = flex_attention(q2, k2, v2, score_mod=scoremod_2)
|
|
return flex_attention(q3, k3, v3, score_mod=scoremod_1)
|
|
|
|
out = f(query, *keys, *values)
|
|
out2 = torch.compile(f)(query, *keys, *values)
|
|
self.assertTrue((out - out2).abs().mean() < 1e-2)
|
|
|
|
@supported_platform
|
|
@common_utils.parametrize("dtype", test_dtypes)
|
|
def test_njt_causal(self, dtype):
|
|
offsets = torch.tensor(
|
|
[0, 1024, 1024 + 512, S], device="cuda", dtype=torch.int32
|
|
)
|
|
seq_idx = torch.zeros(S, device="cuda", dtype=torch.int32)
|
|
for idx in range(len(offsets) - 1):
|
|
seq_idx[offsets[idx] : offsets[idx + 1]] = idx
|
|
|
|
def create_njt_wrapper(orig_score_mod, offsets, seq_idx):
|
|
def njt_score_mod(qk, b, h, q, kv):
|
|
q_nested = q - offsets[seq_idx[q]]
|
|
kv_nested = kv - offsets[seq_idx[kv]]
|
|
return orig_score_mod(qk, b, h, q_nested, kv_nested)
|
|
|
|
return njt_score_mod
|
|
|
|
causal_njt = create_njt_wrapper(_causal, offsets, seq_idx)
|
|
|
|
self.run_test(causal_njt, dtype)
|
|
|
|
@supported_platform
|
|
def test_mixed_dtypes_fails(self):
|
|
query = torch.randn((1, 1, 8, 64), dtype=torch.float32, device="cuda")
|
|
key = torch.randn((1, 1, 1024, 64), dtype=torch.float16, device="cuda")
|
|
value = torch.randn((1, 1, 1024, 64), dtype=torch.float16, device="cuda")
|
|
with self.assertRaisesRegex(
|
|
ValueError, "Expected query, key, and value to have the same dtype"
|
|
):
|
|
flex_attention(query, key, value, _identity)
|
|
|
|
@supported_platform
|
|
@patch.object(torch._inductor.config, "max_autotune", True)
|
|
def test_max_autotune(self):
|
|
def score_mod(score, b, h, m, n):
|
|
return score * 2
|
|
|
|
self.run_test(score_mod)
|
|
|
|
@supported_platform
|
|
@patch.object(torch._inductor.config, "max_autotune", True)
|
|
def test_max_autotune_with_captured(self):
|
|
head_scale = torch.randn(Hq, device="cuda")
|
|
batch_scale = torch.randn(B, device="cuda")
|
|
tok_scale = torch.randn(S, device="cuda")
|
|
q_scale = torch.randn(1, device="cuda")
|
|
|
|
def bias_mod(score, batch, head, token_q, token_kv):
|
|
score = score + tok_scale[token_kv]
|
|
score = score + q_scale[token_q]
|
|
score = score + batch_scale[batch]
|
|
score = score + head_scale[head]
|
|
return score
|
|
|
|
self.run_test(bias_mod)
|
|
|
|
@supported_platform
|
|
def test_fully_masked_out_rows_0_check_gqa(self):
|
|
# Ensure fully masked out rows won't cause NaNs.
|
|
query = torch.randn(
|
|
(B, Hq, S, D), dtype=torch.float32, device="cuda", requires_grad=True
|
|
)
|
|
key = torch.randn(
|
|
(B, Hkv, S, D), dtype=torch.float32, device="cuda", requires_grad=True
|
|
)
|
|
value = torch.randn(
|
|
(B, Hkv, S, D), dtype=torch.float32, device="cuda", requires_grad=True
|
|
)
|
|
|
|
M = S // 2
|
|
|
|
def mask_mod(b, h, q, kv):
|
|
return q < M
|
|
|
|
block_mask = create_block_mask(mask_mod, 1, 1, S, S)
|
|
|
|
flex = torch.compile(flex_attention, dynamic=False)
|
|
|
|
out, lse = flex(
|
|
query, key, value, block_mask=block_mask, enable_gqa=True, return_lse=True
|
|
)
|
|
self.assertEqual(out[:, :, M:, :].sum(), 0)
|
|
self.assertTrue((lse[:, :, M:] == 0.0).all())
|
|
|
|
loss = out.sum() + lse.sum()
|
|
loss.backward()
|
|
self.assertEqual(query.grad[:, :, M:, :].sum(), 0)
|
|
|
|
@supported_platform
|
|
def test_windowed_no_mask_vs_sdpa(self):
|
|
score_mod = _generate_windowed(1000)
|
|
attention = functools.partial(flex_attention, score_mod=score_mod)
|
|
|
|
sdpa_mask = _get_windowed_sdpa_mask(8, S, 1000)
|
|
|
|
sdpa_attention = functools.partial(
|
|
torch.nn.functional.scaled_dot_product_attention, attn_mask=sdpa_mask
|
|
)
|
|
|
|
self.run_test_with_call(attention, sdpa_attention, Q_H=16, KV_H=16, Q_S=8)
|
|
|
|
@supported_platform
|
|
def test_windowed_full_mask_vs_sdpa(self):
|
|
def mask_mod(b, h, q, kv):
|
|
return q + 1000 >= kv
|
|
|
|
score_mod = _generate_windowed(1000)
|
|
|
|
block_mask = create_block_mask(mask_mod, 1, 1, 8, S)
|
|
attention = functools.partial(
|
|
flex_attention, block_mask=block_mask, score_mod=score_mod
|
|
)
|
|
|
|
sdpa_mask = _get_windowed_sdpa_mask(8, S, 1000)
|
|
sdpa_attention = functools.partial(
|
|
torch.nn.functional.scaled_dot_product_attention, attn_mask=sdpa_mask
|
|
)
|
|
|
|
self.run_test_with_call(attention, sdpa_attention, Q_H=16, KV_H=16, Q_S=8)
|
|
|
|
@supported_platform
|
|
def test_windowed_partial_block_vs_sdpa(self):
|
|
def mask_mod(b, h, q, kv):
|
|
return q + 1000 >= kv
|
|
|
|
block_mask = create_block_mask(mask_mod, 1, 1, 8, S)
|
|
attention = functools.partial(flex_attention, block_mask=block_mask)
|
|
|
|
sdpa_mask = _get_windowed_sdpa_mask(8, S, 1000)
|
|
sdpa_attention = functools.partial(
|
|
torch.nn.functional.scaled_dot_product_attention, attn_mask=sdpa_mask
|
|
)
|
|
|
|
self.run_test_with_call(attention, sdpa_attention, Q_H=16, KV_H=16, Q_S=8)
|
|
|
|
@supported_platform
|
|
@common_utils.parametrize("dtype", test_dtypes)
|
|
@common_utils.parametrize("score_mod", [_identity, _causal])
|
|
def test_logsumexp_correctness(self, dtype, score_mod):
|
|
make_kv = functools.partial(
|
|
torch.randn,
|
|
(B, Hkv, S, D),
|
|
dtype=dtype,
|
|
device="cuda",
|
|
requires_grad=True,
|
|
)
|
|
make_q = functools.partial(
|
|
torch.randn,
|
|
(B, Hkv, Hq // Hkv, D),
|
|
dtype=dtype,
|
|
device="cuda",
|
|
requires_grad=True,
|
|
)
|
|
q, k, v = make_q(), make_kv(), make_kv()
|
|
|
|
@torch.compile
|
|
def sdpa_hop(q, k, v, score_mod):
|
|
return flex_attention(q, k, v, score_mod, return_lse=True)
|
|
|
|
@torch.compile(backend="aot_eager")
|
|
def eager_sdpa_hop(q, k, v, score_mod):
|
|
return flex_attention(q, k, v, score_mod, return_lse=True)
|
|
|
|
ref_out, ref_lse = eager_sdpa_hop(
|
|
q.to(torch.float64),
|
|
k.to(torch.float64),
|
|
v.to(torch.float64),
|
|
score_mod,
|
|
)
|
|
compiled_out, compiled_lse = sdpa_hop(q, k, v, score_mod)
|
|
|
|
self.assertTrue(ref_lse.dtype == torch.float64)
|
|
self.assertTrue(compiled_lse.dtype == torch.float32)
|
|
|
|
tolerance = Tolerances(atol=2e-2, rtol=2e-2)
|
|
torch.testing.assert_close(
|
|
ref_out.to(dtype=torch.float32),
|
|
compiled_out.to(dtype=torch.float32),
|
|
atol=tolerance.atol,
|
|
rtol=tolerance.rtol,
|
|
)
|
|
torch.testing.assert_close(
|
|
ref_lse.to(dtype=torch.float32),
|
|
compiled_lse.to(dtype=torch.float32),
|
|
atol=tolerance.atol,
|
|
rtol=tolerance.rtol,
|
|
)
|
|
|
|
@supported_platform
|
|
def test_logsumexp_only_return(self):
|
|
make_q = functools.partial(
|
|
torch.randn,
|
|
(B, Hkv, Hq // Hkv, D),
|
|
dtype=torch.float32,
|
|
device="cuda",
|
|
requires_grad=True,
|
|
)
|
|
make_kv = functools.partial(
|
|
torch.randn,
|
|
(B, Hkv, S, D),
|
|
dtype=torch.float32,
|
|
device="cuda",
|
|
requires_grad=True,
|
|
)
|
|
|
|
q, k, v = make_q(), make_kv(), make_kv()
|
|
|
|
@torch.compile
|
|
def func(q, k, v, score_mod):
|
|
_, lse = flex_attention(q, k, v, score_mod, return_lse=True)
|
|
lse_2 = lse * 2
|
|
return lse_2
|
|
|
|
_, code = run_and_get_code(func, q, k, v, _identity)
|
|
# Ensure that we're still generating the flexattention kernel
|
|
FileCheck().check_count(".run(primals_1, primals_2, primals_3", 1, True).run(
|
|
code[0]
|
|
)
|
|
|
|
@supported_platform
|
|
def test_do_not_trigger_dynamic_shapes_on_empty_block_mask(self):
|
|
torch._dynamo.reset()
|
|
H = Hq
|
|
q = torch.randn(B, H, 1, D, device="cuda")
|
|
for i in range(5):
|
|
k = torch.randn(B, H, S + i, D, device="cuda")
|
|
v = torch.randn(B, H, S + i, D, device="cuda")
|
|
compiled_flex_attention = torch.compile(flex_attention)
|
|
ref = flex_attention(q, k, v)
|
|
res = compiled_flex_attention(q, k, v)
|
|
tolerance = Tolerances(atol=2e-1, rtol=2e-1)
|
|
torch.testing.assert_close(
|
|
ref, res, atol=tolerance.atol, rtol=tolerance.rtol
|
|
)
|
|
# Ensure no more re-compilation after the second automatic dynamic shape version.
|
|
if i == 0:
|
|
self.assertEqual(torch._dynamo.utils.counters["frames"]["ok"], 1)
|
|
else:
|
|
self.assertEqual(torch._dynamo.utils.counters["frames"]["ok"], 2)
|
|
|
|
|
|
common_utils.instantiate_parametrized_tests(TestFlexDecoding)
|
|
|
|
if __name__ == "__main__":
|
|
from torch._inductor.test_case import run_tests
|
|
|
|
run_tests()
|