pytorch/torch/csrc/jit/script/compiler.cpp
Zachary DeVito 61bedc96f0 Schema-based creation of graph nodes (#10198)
Summary:
This commit adds the ability to insert a node with inputs, using the schema to check the inputs are valid types, fill in any default values, and perform standard implicit conversions. Since it is schema based, it will discover and use the right overload.
Constructors to `NamedValue` enable it to be constructed using `IValue` constants so it is possible to use constant values in the input list as well:

```
g.insert(aten::add, {v, 3});
```

Keyword arguments are also supported:

```
g.insert(aten::add, {v}, {{"other", t}, {"scalar", 1}});
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/10198

Differential Revision: D9307252

Pulled By: zdevito

fbshipit-source-id: 644620aa85047d1eae1288383a619d50fec44d9b
2018-08-14 10:25:38 -07:00

1564 lines
54 KiB
C++

#include "torch/csrc/jit/script/compiler.h"
#include "torch/csrc/jit/passes/lower_tuples.h"
#include "torch/csrc/jit/operator.h"
#include "torch/csrc/jit/interpreter.h"
#include "torch/csrc/jit/ir.h"
#include "torch/csrc/jit/script/parser.h"
#include "torch/csrc/jit/assertions.h"
#include "torch/csrc/utils/object_ptr.h"
#include "torch/csrc/jit/operator.h"
#include "torch/csrc/jit/constants.h"
#include "ATen/core/optional.h"
#include <climits>
#include <set>
namespace torch {
namespace jit {
namespace script {
using SugaredValuePtr = std::shared_ptr<SugaredValue>;
using FunctionTable = std::unordered_map<std::string, Method&>;
using ValueTable = std::unordered_map<std::string, SugaredValuePtr>;
using AttributeMap = std::unordered_map<std::string, Const>;
using ListAttributeMap = std::unordered_map<std::string, std::vector<Const>>;
struct NoneValue : SugaredValue {
NoneValue() {}
virtual std::string kind() const override {
return "None";
}
};
struct PrintValue : public SugaredValue {
std::string kind() const override {
return "print";
}
std::shared_ptr<SugaredValue> call(
SourceRange loc,
Method & m,
at::ArrayRef<NamedValue> inputs,
at::ArrayRef<NamedValue> attributes,
size_t n_binders) override {
auto& g = *m.graph();
if (!attributes.empty())
throw ErrorReport(loc) << "print doesn't accept any keyword arguments";
//temporary hack to allow print statements to work in python 2, where
//print(a, b) is treated as a (a, b) tuple input.
std::vector<Value*> lowered_inputs = toValues(*m.graph(), inputs);
if(lowered_inputs.size() == 1 && lowered_inputs.at(0)->node()->kind() == prim::TupleConstruct) {
auto input = lowered_inputs[0];
for(size_t j = 0; j < input->node()->inputs().size(); ++j) {
lowered_inputs.insert(lowered_inputs.begin() + 1 + j, input->node()->inputs().at(j));
}
lowered_inputs.erase(lowered_inputs.begin());
}
g.insertNode(g.create(prim::Print, lowered_inputs, 0)
->setSourceLocation(std::make_shared<SourceRange>(loc)));
return std::make_shared<NoneValue>();
}
};
static Value* typeCast(const SourceRange& loc, Value* value, TypePtr dst) {
auto& graph = *value->owningGraph();
const TypePtr orig = value->type();
Node* n = nullptr;
if(dst->isSubtypeOf(DynamicType::get()) && orig->isSubtypeOf(NumberType::get())) {
n = graph.createNumToTensor(value);
} else if (dst->isSubtypeOf(NumberType::get()) && orig->isSubtypeOf(DynamicType::get())) {
n = graph.createTensorToNum(dst, value);
} else if(dst->isSubtypeOf(IntType::get()) && orig->isSubtypeOf(FloatType::get())) {
n = graph.createFloatToInt(value);
} else if(dst->isSubtypeOf(FloatType::get()) && orig->isSubtypeOf(IntType::get())) {
n = graph.createIntToFloat(value);
} else {
throw ErrorReport(loc) << "Cannot cast type '" << orig->str() << "' to type '"
<< dst->str() << "'.";
}
auto* result = graph.insertNode(n)
->setSourceLocation(std::make_shared<SourceRange>(loc))
->output();
return result;
}
// expressions like int(x)
struct CastValue : public SugaredValue {
CastValue(TypePtr type)
: type(type) {}
std::string kind() const override {
std::stringstream ss;
ss << "<" << type->str() << " cast primitive>";
return ss.str();
}
std::shared_ptr<SugaredValue> call(
SourceRange loc,
Method & m,
at::ArrayRef<NamedValue> inputs,
at::ArrayRef<NamedValue> attributes,
size_t n_binders) override {
if (!attributes.empty())
throw ErrorReport(loc) << "casts do not accept any keyword arguments";
if (inputs.size() != 1)
throw ErrorReport(loc) << "expected a single argument for cast";
auto values = toValues(*m.graph(), inputs);
Value* input = values.at(0);
if(!input->type()->isSubtypeOf(type)) {
input = typeCast(loc, input, type);
}
return std::make_shared<SimpleValue>(input);
}
private:
TypePtr type;
};
// Auxiliary data structure for desugaring variable binding into our always
// explicitly scoped language as we descend down
// nested control structures in the frontend (which themselves don't introduce
// scopes)
//
// The algorithm is roughly as follows:
// 1) While emitting a block within a control operator, add inputs and outputs
// from the block for each value referenced (both "reads" and "writes").
// This sets the value up as a candidate loop carried dependency.
// 2) When we reach the end of the block, examine all the values in the current
// scope's value map. If the name also resides in an outer scope with a
// different Value*, this is a true loop-carried dependency. If not, this
// value was not assigned to. Replace all references to the block input
// with the Value* pointed to in the tightest enclosing scope. Then delete
// that block input and output.
// 3) When we emit the actual control operator, take all of the loop-carried
// dependency values as inputs and return them as outputs from the control
// op
//
// Note that an alternative implementation could only add the loop-carried dep
// inputs and outputs when we see a value that is mutated. This, however
// requires replacing all references to that value *within the current
// block* with a new input. That is to say: we need to traverse the pre-
// decessor nodes and replace inputs that reference that value with the
// newly-created input. This could be made less expensive with a change to
// the IR API, but for now we choose to pessimisitically create inputs and
// delete unnecessary ones later with replaceAllusesWith().
struct Environment {
Environment(Method & method, const Resolver& resolver, Block* b, std::shared_ptr<Environment> next = nullptr)
: method(method), resolver(resolver), b(b), next(next) {}
Method & method;
const Resolver& resolver;
std::vector<std::string> captured_inputs;
Block* b;
std::shared_ptr<Environment> next;
SugaredValuePtr findInThisFrame(const std::string& name) {
auto it = value_table.find(name);
if (it != value_table.end()) {
return it->second;
}
return nullptr;
}
SugaredValuePtr findInParentFrame(const std::string& name) {
return next ? next->findInAnyFrame(name) : nullptr;
}
SugaredValuePtr findInAnyFrame(const std::string& name) {
for (auto runner = this; runner; runner = runner->next.get()) {
if(auto r = runner->findInThisFrame(name)) {
return r;
}
}
return nullptr;
}
Value* getValueInThisFrame(const SourceRange& loc, const std::string& name) {
return value_table.at(name)->asValue(loc, method);
}
SugaredValuePtr createCapturedInput(Value* orig, const std::string& name) {
// Create the input
Value* new_input = b->addInput()->setType(orig->type());
// Associate this name with this value
auto sv = std::make_shared<SimpleValue>(new_input);
value_table[name] = sv;
// List as a positional input
captured_inputs.push_back(name);
return sv;
}
SugaredValuePtr createCapturedInputIfNeeded(const SourceRange& loc, std::string ident) {
auto in_frame = findInThisFrame(ident);
if (in_frame) {
return in_frame;
}
// recursively handles the case where parent blocks are also loops
auto from_parent = next ? next->createCapturedInputIfNeeded(loc, ident) : nullptr;
// recursively create the captured input if it is the loop block
if (from_parent && getBlockOwningKind() == prim::Loop) {
if (Value* simple_val = asSimple(from_parent))
from_parent = createCapturedInput(simple_val, ident);
}
return from_parent;
}
Block* block() {
return b;
}
Symbol getBlockOwningKind() {
Symbol owning_kind = Symbol();
if (b->owningNode()) {
owning_kind = b->owningNode()->kind();
}
return owning_kind;
}
void setVar(const SourceRange& loc, const std::string& name, Value* value) {
setSugaredVar(loc, name, std::make_shared<SimpleValue>(value));
}
static Value* asSimple(SugaredValuePtr value) {
if(SimpleValue* sv = dynamic_cast<SimpleValue*>(value.get())) {
return sv->getValue();
}
return nullptr;
}
void setSugaredVar(const SourceRange& loc, const std::string& name, SugaredValuePtr value) {
Value* as_simple_value = asSimple(value);
if (as_simple_value)
as_simple_value->setUniqueName(name);
// prevent re-assignment involving any sugared values
// any reassignment like:
// a = ...
// while ...
// a = ..
// requires 'a' to be first-class in the graph since its value depends on
// control flow
if(auto parent = findInParentFrame(name)) {
if(!as_simple_value) {
throw ErrorReport(loc) << "Cannot re-assign '" << name << "' to a value of type " << value->kind() <<
" because " << name << " is not a first-class value. Only reassignments to first-class values are allowed";
}
Value* simple_parent = asSimple(parent);
if(!simple_parent) {
throw ErrorReport(loc) << "Cannot re-assign '" << name << "' because it has type " << value->kind() <<
" and " << name << " is not a first-class value. Only reassignments to first-class values are allowed";
}
if(!as_simple_value->type()->isSubtypeOf(unshapedType(simple_parent->type()))) {
throw ErrorReport(loc) << "variable '" << name << "' previously has type " << simple_parent->type()->str()
<< " but is now being assigned to a value of type " << as_simple_value->type()->str();
}
}
if (as_simple_value)
createCapturedInputIfNeeded(loc, name);
value_table[name] = std::move(value);
}
SugaredValuePtr getSugaredVar(const Ident& ident, bool required=true) {
return getSugaredVar(ident.name(), ident.range());
}
Value* getVar(const Ident& ident) {
return getSugaredVar(ident)->asValue(ident.range(), method);
}
SugaredValuePtr getSugaredVar(const std::string& ident, SourceRange range, bool required=true) {
auto retval = createCapturedInputIfNeeded(range, ident);
if(!retval) {
retval = resolver(ident, method, range);
}
if(!retval) {
static std::unordered_map<std::string, SugaredValuePtr> globals = {
{"print", std::make_shared<PrintValue>()},
{"float", std::make_shared<CastValue>(FloatType::get())},
{"int", std::make_shared<CastValue>(IntType::get())},
{"bool", std::make_shared<CastValue>(IntType::get())},
// todo(zach): remove when we can correctly export torch.full via ONNX
// or we have implicit conversion that can convert numbers to tensors
{"_to_tensor", std::make_shared<CastValue>(DynamicType::get()) },
};
auto it = globals.find(ident);
if(it != globals.end())
retval = it->second;
}
if (!retval && required) {
throw ErrorReport(range) << "undefined value " << ident;
}
return retval;
}
Value* getVar(const std::string& ident, SourceRange range) {
return getSugaredVar(ident, range)->asValue(range, method);
}
// Given that after emitting statements in a block, we've added block inputs
// for all value references and assignments, delete inputs for which there was
// no assignment, only references.
void deleteExtraInputs(const SourceRange& loc) {
// note: skip i == 0, it is the loop trip count for inputs
// and the loop condition for outputs.
// captured_inputs is indexed by i - 1 since it only contains loop
// carried dependencies
// inputs: loop_counter, lcd0, lcd1, ...
// outputs: loop_condition, lcd0, lcd1, ...
// captured_inputs: lcd0, lcd1, ...
JIT_ASSERT(b->inputs().size() == b->outputs().size());
JIT_ASSERT(b->inputs().size() == captured_inputs.size() + 1);
for(size_t i = b->inputs().size() - 1; i > 0; i--) {
// nothing changed along this loop
if(b->inputs()[i] == b->outputs()[i]) {
auto name = captured_inputs[i - 1];
Value* orig = findInParentFrame(name)->asValue(loc, method);
b->inputs()[i]->replaceAllUsesWith(orig);
b->eraseInput(i);
b->eraseOutput(i);
captured_inputs.erase(captured_inputs.begin() + i - 1);
}
}
}
std::vector<std::string> definedVariables() {
std::vector<std::string> result;
for(auto & kv : value_table) {
result.push_back(kv.first);
}
return result;
}
private:
ValueTable value_table;
};
Value* packOutputs(Graph& g, at::ArrayRef<Value*> values) {
if(values.size() == 1) {
return values[0];
}
return g.insertNode(g.createTuple(values))->output();
}
Value* createNumber(Graph& g, const SourceRange& loc, const at::Tensor& val) {
JIT_ASSERT(val.numel() == 1);
auto* output = g.insertConstant(val, loc);
if (val.type().scalarType() == at::kLong) {
output->setType(IntType::get());
} else if (val.type().scalarType() == at::kFloat) {
output->setType(FloatType::get());
} else {
throw ErrorReport(loc) << "createNumber with unknown scalar type ("
<< val.type().scalarType() << "). Please file a bug report.";
}
return output;
}
at::optional<std::vector<int64_t>> getIntListAttribute(at::optional<int32_t> N, Value* input) {
auto list = constant_as<Shared<jit::IntList>>(input);
if(list)
return list.value()->elements();
// broadcast IntList[3] with value 4 -> {4, 4, 4}
if(!N)
return at::nullopt;
auto r = constant_as<int64_t>(input);
if(!r)
return at::nullopt;
// broadcast to attribute size
return std::vector<int64_t>(*N, *r);
}
at::ArrayRef<Value*> createTupleUnpack(Value* v) {
// small peephole optimization to ensure IntList attributes can still turn
// into constants e.g. in x.expand([3, 4])
if(v->node()->kind() == prim::TupleConstruct)
return v->node()->inputs();
auto & g = *v->owningGraph();
return g.insertNode(g.createTupleUnpack(v))->outputs();
}
static inline bool isIntUsedAsIntList(
const Value* value,
const Argument& arg) {
// Look for int[N]
return value->type()->kind() == TypeKind::IntType &&
*arg.type == *ListType::ofInts() && arg.N;
}
at::optional<std::vector<Value*>> tryMatchSchema(
const FunctionSchema& schema,
const SourceRange& loc,
Graph& graph,
at::ArrayRef<NamedValue> inputs,
at::ArrayRef<NamedValue> attributes,
std::ostream& failure_messages) {
auto err = [&]() -> std::ostream& {
failure_messages << "\nfor operator " << schema << ":\n";
return failure_messages;
};
std::vector<at::optional<NamedValue>> positional_inputs(schema.arguments.size(), at::nullopt);
size_t total_inputs = attributes.size() + inputs.size();
if(total_inputs > schema.arguments.size()) {
err() << "expected at most " << schema.arguments.size() << " arguments "
<< "but found " << total_inputs << "\n" << loc << "\n";
return at::nullopt;
}
// fill in positional arguments
for(size_t i = 0; i < inputs.size(); ++i) {
positional_inputs[i] = inputs[i];
}
// fill in named arguments
for(const NamedValue& nv : attributes) {
auto idx = schema.argumentIndexWithName(nv.name());
if(!idx) {
err() << "unknown keyword argument '" << nv.name() << "'\n" << nv.locOr(loc);
return at::nullopt;
}
if(positional_inputs[*idx]) {
err() << "argument " << nv.name() << " specified twice \n" << nv.locOr(loc);
return at::nullopt;
}
positional_inputs[*idx] = nv;
}
// fill in default values
for(size_t i = 0; i < positional_inputs.size(); ++i) {
if(positional_inputs[i])
continue;
auto default_value = schema.arguments[i].default_value;
if(!default_value) {
err() << "argument " << schema.arguments[i].name << " not provided.\n" << loc;
return at::nullopt;
}
positional_inputs[i] = NamedValue(*default_value);
}
// check input types
std::vector<Value*> matched_inputs;
for(size_t i = 0; i < schema.arguments.size(); ++i) {
Value* value = positional_inputs[i]->value(graph);
const auto& arg = schema.arguments[i];
// some functions that take lists of integers for fixed size arrays
// also allow single ints to be passed in their place.
// the single int is then repeated to the length of the list
if (isIntUsedAsIntList(value, arg)) {
std::vector<Value*> repeated(*arg.N, value);
value = graph.insertNode(graph.createList(IntType::get(), repeated))->output();
}
// Allow homogeneous tuples to be casted implicitly to lists of appropriate types
if (arg.type->kind() == TypeKind::ListType &&
value->type()->kind() == TypeKind::TupleType &&
value->type()->isSubtypeOf(arg.type)) {
auto unpacked = createTupleUnpack(value);
auto elem_type = arg.type->expect<ListType>()->getElementType();
value = graph.insertNode(graph.createList(elem_type, unpacked))->output();
}
if (value->node()->kind() == prim::None){
if (arg.type->isSubtypeOf(NumberType::get()))
value = graph.insertConstant(at::Scalar(NAN), loc);
else
value = graph.insertNode(graph.createUndefined())->output();
}
if(!value->type()->isSubtypeOf(arg.type)) {
err() << "expected a value of type " << arg.type->str() << " for argument '" << arg.name << "' but found "
<< value->type()->str() << "\n"
<< positional_inputs[i]->locOr(loc);
return at::nullopt;
}
matched_inputs.push_back(value);
}
return matched_inputs;
}
static Value* tryEmitBuiltin(
const std::shared_ptr<Operator>& op,
std::stringstream& failure_messages,
const SourceRange& loc,
Graph& graph,
Symbol name,
at::ArrayRef<NamedValue> inputs,
at::ArrayRef<NamedValue> attributes) {
auto matched_inputs = tryMatchSchema(op->schema(), loc, graph, inputs, attributes, failure_messages);
if(!matched_inputs)
return nullptr;
// we successfully matched this schema, construct the node
auto n = graph.insertNode(graph.create(name, *matched_inputs, 0))
->setSourceLocation(std::make_shared<SourceRange>(loc));
// special case for chunk when the chunks=<const> is known
// DO NOT ADD MORE SPECIAL CASES HERE, REFACTOR INTO A FUNCTION IF
// NEEDED
if(n->kind() == aten::chunk) {
auto value = constant_as<int64_t>((*matched_inputs)[1]);
if(!value) {
throw ErrorReport(loc) << "argument 'chunks' must be a constant";
}
for(int64_t i = 0; i < *value; ++i)
n->addOutput();
} else {
for(auto & ret : op->schema().returns) {
n->addOutput()->setType(ret.type);
}
}
// assert that we did indeed create an op that has implementation
// otherwise schema and dispatch are not in sync
getOperation(n);
return packOutputs(graph, n->outputs());
}
static std::string prefixLine(const std::string& str, std::string prefix) {
std::stringstream ss;
bool was_newline = true;
for(auto c : str) {
if(was_newline)
ss << prefix;
ss.put(c);
was_newline = c == '\n';
}
return ss.str();
}
Value* emitBuiltinCall(
const SourceRange& loc,
Graph& graph,
Symbol name,
at::ArrayRef<NamedValue> inputs,
at::ArrayRef<NamedValue> attributes,
// if true, emitBuiltinCall will throw an exception if this builtin does not exist,
// otherwise it will return nullptr if the builtin is not found.
bool required) {
const auto& variants = getAllOperatorsFor(name);
std::stringstream failure_messages;
for (const std::shared_ptr<Operator>& op : variants) {
if (auto result = tryEmitBuiltin(
op, failure_messages, loc, graph, name, inputs, attributes)) {
return result;
}
}
// none of the options worked
if(!required) {
return nullptr;
}
if(variants.size() == 0) {
throw ErrorReport(loc) << "unknown builtin op";
}
throw ErrorReport(loc) << "arguments for call are not valid:\n"
<< prefixLine(failure_messages.str(), " ")
<< "for call at";
}
static Value* ensureTensor(const SourceRange& range, Value* v) {
if(!v->type()->isSubtypeOf(DynamicType::get())) {
throw ErrorReport(range) << "expected a tensor value but found a "
<< v->type()->str();
}
return v;
}
static Value* ensureInt(const SourceRange& range, Value* v) {
if(!v->type()->isSubtypeOf(IntType::get())) {
throw ErrorReport(range) << "expected a int but found a "
<< v->type()->str();
}
return v;
}
void ensureTensors(const SourceRange& range, at::ArrayRef<Value*> values) {
for(auto value : values) {
ensureTensor(range, value);
}
}
static Value* identity(const SourceRange& range, Value* v) {
return v;
}
std::shared_ptr<SugaredValue> BuiltinFunction::call(
SourceRange loc,
Method & m,
at::ArrayRef<NamedValue> inputs_,
at::ArrayRef<NamedValue> attributes,
size_t n_binders) {
std::vector<NamedValue> inputs;
if (value)
inputs.push_back(*value);
inputs.insert(inputs.end(), inputs_.begin(), inputs_.end());
return std::make_shared<SimpleValue>(emitBuiltinCall(loc, *m.graph(), Symbol::aten(name), inputs, attributes, true));
}
struct to_ir {
to_ir(
TypedDef typed_def,
FunctionTable& function_table,
const Resolver& resolver,
SugaredValuePtr self,
Method& method) // method being constructed
: method(method)
, graph(method.graph())
, def(typed_def.def)
, function_table(function_table)
, resolver(resolver)
, environment_stack(nullptr) {
pushFrame(graph->block());
std::vector<Argument> arguments, returns; // for schema
// inputs
auto it = def.params().begin();
auto end = def.params().end();
// Type annotations exclude explicitly typing the "self" parameter, so in the
// case that this is a method with self we expect one fewer parameter annotation
// than the number of parameters this Def takes.
auto expected_annotation_size = self ? def.params().size() - 1 : def.params().size();
if (typed_def.schema && typed_def.schema->arguments.size() != expected_annotation_size) {
throw ErrorReport(def.params().range()) << "Number of type annotations for"
<< " function parameters (" << typed_def.schema->arguments.size() << ")"
<< " does not match the number of parameters on the function ("
<< expected_annotation_size << ")!";
}
if(self) {
if(it == end)
throw ErrorReport(def.params().range()) << "methods must have a self argument";
environment_stack->setSugaredVar(def.range(), (*it).ident().name(), self);
++it;
}
size_t arg_annotation_idx = 0;
for(;it != end; ++it) {
auto& name = (*it).ident().name();
// Add the input to the graph
Value *new_input = graph->addInput(name);
environment_stack->setVar((*it).ident().range(), name, new_input);
// Record the type for the schema and set the Type on the Value*
// TypePtr arg_type = DynamicType::get();
if (typed_def.schema) {
arguments.push_back(typed_def.schema->arguments.at(arg_annotation_idx++));
} else {
arguments.emplace_back(name, DynamicType::get());
}
new_input->setType(arguments.back().type);
}
// body
auto stmts = def.statements();
auto stmts_begin = stmts.begin();
auto stmts_end = stmts.end();
bool has_return = false;
if (stmts_begin != stmts_end && (*std::prev(stmts_end)).kind() == TK_RETURN) {
--stmts_end;
has_return = true;
}
emitStatements(stmts_begin, stmts_end);
// outputs
if (has_return) {
auto return_stmt = Return(*stmts_end);
auto results = getValues(return_stmt.values(), true, identity);
// a single return value that is a tuple expands in place:
// return a
if (return_stmt.values().size() == 1 && results.size() == 1) {
auto result = results.at(0);
if(result->type()->cast<TupleType>()) {
results = createTupleUnpack(result).vec();
}
}
if (typed_def.schema && typed_def.schema->returns.size() != results.size()) {
throw ErrorReport(def.range()) << "Number of type annotations for function"
<< " return (" << typed_def.schema->returns.size() << ") does not match"
<< " the number of returns from the function (" << results.size() << ")!";
}
auto range = return_stmt.range();
size_t return_type_idx = 0;
for (auto& r : results) {
// TODO: support tuples and lists as returns
auto return_kind = r->type()->kind();
if (return_kind != TypeKind::TensorType &&
return_kind != TypeKind::DynamicType &&
return_kind != TypeKind::IntType &&
return_kind != TypeKind::FloatType) {
throw ErrorReport(return_stmt.range()) << "The only supported return types "
<< "are tensors, ints and floats";
}
graph->registerOutput(r);
TypePtr type = DynamicType::get();
if (typed_def.schema) {
type = typed_def.schema->returns.at(return_type_idx).type;
if (!r->type()->isSubtypeOf(type)) {
throw ErrorReport(return_stmt.range()) << "Return value at position "
<< return_type_idx << " was annotated as having type " << type->str()
<< " but is actually of type " << r->type()->str();
}
return_type_idx++;
}
returns.push_back({"", type});
}
}
method.setSchema({def.name().name(), std::move(arguments), std::move(returns)});
// remove any uses of tuples that we inserted
LowerTuples(graph);
}
private:
Method& method;
std::shared_ptr<Graph> graph;
Def def;
FunctionTable& function_table;
const Resolver& resolver;
// Singly-linked list of environments. This top element contains a member
// `next` that points to the most immediate enclosing scope's value.
std::shared_ptr<Environment> environment_stack;
void pushFrame(Block * b) {
environment_stack = std::make_shared<Environment>(method, resolver, b, environment_stack);
}
std::shared_ptr<Environment> popFrame() {
auto old_frame = environment_stack;
environment_stack = environment_stack->next;
return old_frame;
}
void emitStatements(const List<Stmt>& statements) {
return emitStatements(statements.begin(), statements.end());
}
void emitStatements(List<Stmt>::const_iterator begin, List<Stmt>::const_iterator end) {
for (; begin != end; ++begin) {
auto stmt = *begin;
switch (stmt.kind()) {
case TK_IF:
emitIf(If(stmt));
break;
case TK_WHILE:
emitWhile(While(stmt));
break;
case TK_FOR:
emitFor(For(stmt));
break;
case TK_ASSIGN:
emitAssignment(Assign(stmt));
break;
case TK_GLOBAL:
for (auto ident : Global(stmt).names()) {
const auto& name = Ident(ident).name();
environment_stack->setVar(ident.range(), name, graph->addInput(name));
}
break;
case TK_EXPR_STMT: {
auto exprs = ExprStmt(stmt).exprs();
for (const auto& expr : exprs) {
emitSugaredExpr(expr, 0);
}
}
break;
case TK_RETURN:
throw ErrorReport(stmt) << "return statements can appear only at the end "
<< "of the function body";
break;
}
}
}
std::shared_ptr<Environment> emitSingleIfBranch(
Block* b,
const List<Stmt> branch) {
pushFrame(b);
WithInsertPoint guard(b);
emitStatements(branch);
return popFrame();
}
Node* create(Symbol kind, const SourceRange& loc, size_t n_outputs) {
return graph
->create(kind, n_outputs)
->setSourceLocation(std::make_shared<SourceRange>(loc));
}
Value* emitTernaryIf(const TernaryIf& expr) {
Value* cond_value = emitCond(expr.cond());
Node* n = graph->insertNode(create(prim::If, expr.range(), 0));
n->addInput(cond_value);
auto* true_block = n->addBlock();
auto* false_block = n->addBlock();
auto emit_if_expr = [this](Block* b, const Expr& expr) {
pushFrame(b);
WithInsertPoint guard(b);
Value* out_val = emitExpr(expr);
b->registerOutput(out_val);
popFrame();
};
emit_if_expr(true_block, expr.true_expr());
emit_if_expr(false_block, expr.false_expr());
auto true_type = unshapedType(true_block->outputs().at(0)->type());
auto false_type = unshapedType(false_block->outputs().at(0)->type());
if (*true_type != *false_type) {
throw ErrorReport(expr)
<< "if-expression's true branch has type " << true_type->str()
<< " but false branch has type " << false_type->str();
}
// Add op outputs
auto expr_value = n->addOutput()->setType(true_type); // Resulting value
return expr_value;
}
Value* emitCond(Expr cond) {
Value* v = emitExpr(cond, identity);
if(v->type()->isSubtypeOf(DynamicType::get())) {
v = typeCast(cond.range(), v, IntType::get());
}
if(!v->type()->isSubtypeOf(IntType::get())) {
throw ErrorReport(cond) << "expected a tensor or integer expression for condition but found " << v->type()->str();
}
return v;
}
void emitIf(const If& stmt) {
Value* cond_value = emitCond(stmt.cond());
Node* n = graph->insertNode(create(prim::If, stmt.range(), 0));
n->addInput(cond_value);
auto* true_block = n->addBlock();
auto* false_block = n->addBlock();
// Emit both blocks once to get the union of all mutated values
auto save_true = emitSingleIfBranch(true_block, stmt.trueBranch());
auto save_false = emitSingleIfBranch(false_block, stmt.falseBranch());
// In python, every variable assigned in an if statement escapes
// the scope of the if statement (all variables are scoped to the function).
// Script is a subset of python: we consider variables to be in scope
// as long as there is a definition of the variable along all paths
// through the if statemnent
// ----
// if ...:
// a =
// else:
// ...
// ... = a # error, a is not defined along all paths
// ----
// if ...:
// a =
// else:
// a =
// ... = a # OK, a is defined along all paths
// ----
// a = ...
// if ...:
// a =
// ... = a # OK, a is defined along all paths
//ordered set, because we want deterministic graph output
std::set<std::string> mutated_variables;
for(auto & v : save_true->definedVariables()) {
if(save_false->findInAnyFrame(v)) {
mutated_variables.insert(v);
}
}
for(auto & v : save_false->definedVariables()) {
if(save_true->findInAnyFrame(v)) {
mutated_variables.insert(v);
}
}
// Register outputs in each block
for (const auto& x : mutated_variables) {
auto tv = save_true->getVar(x, stmt.range());
true_block->registerOutput(tv);
auto fv = save_false->getVar(x, stmt.range());
false_block->registerOutput(fv);
environment_stack->setVar(stmt.range(), x, n->addOutput()->setType(tv->type()));
}
}
// *********************** Loop Operators ************************************
// Emits a loop operators conforming to the semantics specified at
// https://github.com/onnx/onnx/blob/master/docs/Operators.md#experimental-loop
// TODO: implement scan_outputs
// the format of the Loop instruction is:
// loop_carried_outputs* = Loop(max_trip_count, start_condition,
// loop_carried_inputs*)
// block0(loop_counter, loop_carried_block*) {
// <body>
// -> (continue_condition,
// loop_carried_block_outputs*)
// }
// all loop_carried_... lists are the same length and represent the value of
// loop-carried variables whose definitions are updated as the loop executes
// in a way that ensure single static assignment.
void emitLoopCommon(
SourceRange range,
at::optional<Expr> max_trip_count,
at::optional<Expr> cond,
const List<Stmt>& body,
at::optional<Ident> itr_ident) {
Node* n = graph->insertNode(create(prim::Loop, range, 0));
Value *max_trip_count_val, *cond_val;
{
WithInsertPoint guard(n);
if (max_trip_count) {
max_trip_count_val = emitExpr(max_trip_count.value(), ensureInt);
} else {
max_trip_count_val =
graph->insertConstant(INT_MAX,range);
}
if (cond) {
cond_val = emitCond(cond.value());
} else {
cond_val = graph->insertConstant(true, range);
}
}
n->addInput(max_trip_count_val);
n->addInput(cond_val);
auto* body_block = n->addBlock();
Value* trip_count = body_block->addInput()->setType(IntType::get()); // Iteration num
{
pushFrame(body_block);
if (itr_ident) {
environment_stack->setVar(itr_ident->range(), itr_ident->name(), trip_count);
}
WithInsertPoint guard(body_block);
emitStatements(body);
// Also emit the conditional
if (cond) {
Value* body_cond_value = emitCond(cond.value());
body_block->registerOutput(body_cond_value);
} else {
Value* cond_value_dummy = graph->insertConstant(true, range);
body_block->registerOutput(cond_value_dummy);
}
auto body_frame = popFrame();
auto outer_frame = environment_stack;
// Add block outputs to correspond to each captured input
// some of these will be removed.
for (const auto& x : body_frame->captured_inputs) {
auto fv = body_frame->getValueInThisFrame(range, x);
body_block->registerOutput(fv);
}
// Remove inputs for values that did not mutate within the
// block
body_frame->deleteExtraInputs(range);
// register node inputs/outputs for the true loop carried deps,
for(size_t i = 0; i < body_frame->captured_inputs.size(); ++i) {
auto x = body_frame->captured_inputs[i];
n->addInput(outer_frame->getVar(x, range));
// body_block->inputs(): loop_counter, lcd0, lcd1, ...
// captured_inputs: lcd0, lcd1, ...
auto typ = body_block->inputs()[i + 1]->type();
outer_frame->setVar(range, x, n->addOutput()->setType(typ));
}
}
}
void emitForRange(SourceRange range, const Ident& target, const List<Expr>& args, const List<Stmt>& body) {
// TODO: start, stop, step loop
if (args.size() != 1) {
throw ErrorReport(range)
<< "range() expects 1 argument but got " << args.size();
}
emitLoopCommon(range, {args[0]}, {}, body, target);
}
void emitFor(const For& stmt) {
// For now, we only support range loops. e.g. for i in range(3): ...
auto targets = stmt.targets();
auto itrs = stmt.itrs();
auto body = stmt.body();
if (stmt.itrs().size() != 1) {
throw ErrorReport(stmt)
<< "List of iterables is not supported currently.";
}
if (targets.size() != 1) {
throw ErrorReport(stmt) << "Iteration variable unpacking is not supported";
}
if (targets[0].kind() != TK_VAR) {
throw ErrorReport(targets[0]) << "Starred unpacking is currently not"
<< " supported for for loops.";
}
auto target = Var(targets[0]).name();
// match range(<expr>) style loops
// itrs must consist of a single Apply node
if (itrs[0].kind() == TK_APPLY) {
Apply range_iterator = Apply(itrs[0]);
if (range_iterator.callee().kind() == TK_VAR) {
Var var = Var(range_iterator.callee());
if (var.name().name() == "range") {
return emitForRange(stmt.range(), target, range_iterator.inputs(), body);
}
}
}
// it isn't a range(<expr>) loop, treat it as a sugared value that maybe can be
// unrolled
auto sv = emitSugaredExpr(itrs[0], 1);
auto instances = sv->asTuple(stmt.range(), method);
const std::string& target_name = target.name();
pushFrame(environment_stack->block());
for(auto inst : instances) {
environment_stack->setSugaredVar(itrs[0].range(), target_name, inst);
emitStatements(body);
}
for (const auto & n : environment_stack->definedVariables()) {
if (environment_stack->findInParentFrame(n)) {
environment_stack->next->setVar(stmt.range(), n, environment_stack->getVar(n, stmt.range()));
}
}
popFrame();
}
void emitWhile(const While& stmt) {
auto cond = stmt.cond();
emitLoopCommon(stmt.range(), {}, {cond}, stmt.body(), {});
}
// Validate that the `lhs` Expr's in an assignment statement are valid. That
// is:
//
// 1) All lhs Expr's are either Var or Starred nodes
// 2) There is at most one Starred node in the lhs Expr
// 3) A Starred node can only appear when there is another non-Starred lhs Expr
// Concretely this means that `*abc = func()` is illegal. Unpacking all
// outputs into a tuple is covered by `abc = func()`.
bool calcNumStarredUnpack(const List<Expr>& lhs, const SourceRange& r) {
size_t num_normal_assign = 0;
size_t num_starred = 0;
for (const auto& assignee : lhs) {
if (assignee.kind() == TK_VAR) {
num_normal_assign++;
} else if (assignee.kind() == TK_STARRED) {
num_starred++;
} else {
throw ErrorReport(assignee)
<< "lhs of assignment must be a variable or starred expression.";
}
}
if (num_starred > 1) {
throw ErrorReport(r)
<< "Only one starred expression is allowed on the lhs.";
}
if (num_starred > 0 && num_normal_assign == 0) {
throw ErrorReport(r) << "A Starred expression may only appear on the "
<< "lhs within the presence of another non-starred"
<< " expression.";
}
return num_starred;
}
void emitAssignment(const Assign& stmt) {
bool starred_unpack = calcNumStarredUnpack(stmt.lhs(), stmt.range());
if (stmt.reduction() != '=') {
if (stmt.lhs().size() != 1) {
throw ErrorReport(stmt)
<< "reductions are only allowed when there is a single variable "
<< "on the left-hand side.";
}
Ident lhs = Var(stmt.lhs()[0]).name();
Expr expr = BinOp::create(stmt.range(), stmt.reduction(),
Var::create(lhs.range(), lhs), stmt.rhs());
environment_stack->setVar(lhs.range(), lhs.name(), emitExpr(expr));
return;
}
// See [N_BINDERS]
size_t n_binders = stmt.lhs().size();
if(starred_unpack)
n_binders--;
auto output = emitSugaredExpr(stmt.rhs(), n_binders);
if(stmt.lhs().size() == 1) {
JIT_ASSERT(!starred_unpack);
auto v = Var(stmt.lhs()[0]);
environment_stack->setSugaredVar(v.range(), v.name().name(), output);
return;
}
auto outputs = output->asTuple(stmt.rhs().range(), method);
if(outputs.size() < n_binders) {
throw ErrorReport(stmt)
<< "need " << (starred_unpack ? "at least " : "")
<< n_binders << " values to unpack but found only "
<< outputs.size();
}
if(outputs.size() > n_binders && !starred_unpack) {
throw ErrorReport(stmt)
<< "too many values to unpack, need " << n_binders << " but found "
<< outputs.size();
}
int i = 0;
for (auto assignee : stmt.lhs()) {
if (assignee.kind() == TK_VAR) {
environment_stack->setSugaredVar(assignee.range(), Var(assignee).name().name(), outputs.at(i));
i++;
} else if (assignee.kind() == TK_STARRED) {
auto var = Starred(assignee).expr();
if (var.kind() != TK_VAR) {
throw ErrorReport(var) << "Cannot pack a tuple into a non-variable.";
}
size_t n_matched = outputs.size() - n_binders;
ArrayRef<std::shared_ptr<SugaredValue>> outputs_ref = outputs;
auto values = fmap(outputs_ref.slice(i, n_matched), [&](const std::shared_ptr<SugaredValue>& v) {
return v->asValue(assignee.range(), method);
});
auto tup = graph->insertNode(graph->createTuple(values))->output();
environment_stack->setVar(
var.range(), Var(var).name().name(), tup);
i += n_matched;
}
}
}
NodeKind getNodeKind(int kind, int ninputs) {
switch (kind) {
case '+':
return aten::add;
case '-':
return aten::sub;
case TK_UNARY_MINUS:
return aten::neg;
case '*':
return aten::mul;
case TK_POW:
return aten::pow;
case '@':
return aten::matmul;
case TK_STARRED:
return prim::Starred;
case '/':
return aten::div;
case TK_NE:
return aten::ne;
case TK_EQ:
return aten::eq;
case '<':
return aten::lt;
case '>':
return aten::gt;
case TK_LE:
return aten::le;
case TK_GE:
return aten::ge;
case TK_AND:
return aten::__and__;
case TK_OR:
return aten::__or__;
case TK_NOT:
return aten::__not__;
default:
throw std::runtime_error("unknown kind " + std::to_string(kind));
}
}
std::vector<NamedValue> getNamedValues(
TreeList trees,
bool maybe_unpack=false,
std::function<Value*(const SourceRange&, Value*)> post_process = ensureTensor) {
std::vector<NamedValue> values;
for (const auto& tree : trees) {
if(maybe_unpack && tree->kind() == TK_STARRED) {
auto starred = Starred(tree);
auto entries = emitSugaredExpr(starred.expr(), 1)->asTuple(starred.range(), method);
for(auto entry : entries) {
values.push_back(NamedValue(
tree->range(),
post_process(
starred.range(), entry->asValue(starred.range(), method))));
}
} else {
values.push_back(NamedValue(
tree->range(), emitExpr(Expr(tree), post_process)));
}
}
return values;
}
std::vector<NamedValue> getNamedValues(
List<Expr> trees,
bool maybe_unpack=false,
std::function<Value*(const SourceRange&, Value*)> post_process = ensureTensor) {
return getNamedValues(trees.tree()->trees(), maybe_unpack, post_process);
}
std::vector<Value*> getValues(
TreeList trees,
bool maybe_unpack=false,
std::function<Value*(const SourceRange&, Value*)> post_process = ensureTensor) {
return toValues(*graph, getNamedValues(trees, maybe_unpack, post_process));
}
std::vector<Value*> getValues(
List<Expr> trees,
bool maybe_unpack=false,
std::function<Value*(const SourceRange&, Value*)> post_process = ensureTensor) {
return getValues(trees.tree()->trees(), maybe_unpack, post_process);
}
// special rules apply when we directly call foo(a,b) when foo is an ident
std::shared_ptr<SugaredValue> emitApplyIdent(Ident ident, const std::vector<NamedValue>& inputs, at::ArrayRef<NamedValue> attributes, size_t n_binders) {
auto it = function_table.find(ident.name());
if (it != function_table.end()) {
return std::make_shared<SimpleValue>(packOutputs(*graph, method.emit_call_to(ident.range(), it->second, inputs, attributes)));
}
if(auto result = emitBuiltinCall(ident.range(), *method.graph(), Symbol::aten(ident.name()), inputs, attributes, false)) {
return std::make_shared<SimpleValue>(result);
}
// it wasn't known built in, so treat it like standard apply
return emitApplyExpr(Var::create(ident.range(), ident), inputs, attributes, n_binders);
}
std::shared_ptr<SugaredValue> emitApplyExpr(Expr callee, const std::vector<NamedValue>& inputs, at::ArrayRef<NamedValue> attributes, size_t n_binders) {
// otherwise we evaluate the callee and then desugar it
auto sv = emitSugaredExpr(callee, 1);
return sv->call(callee.range(), method, inputs, attributes, n_binders);
}
Value* emitExpr(Expr tree, std::function<Value*(const SourceRange&, Value*)> post_process = ensureTensor) {
return post_process(tree.range(), emitSugaredExpr(tree, 1)->asValue(tree.range(), method));
}
NodeKind reverseComparision(NodeKind kind) {
if (kind == aten::lt) {
return aten::gt;
} else if (kind == aten::le) {
return aten::ge;
} else if (kind == aten::gt) {
return aten::lt;
} else if (kind == aten::ge) {
return aten::le;
}
throw std::runtime_error("reverseComparision: unsupported NodeKind. File a bug");
}
// any expression that can produce a SugaredValue is handled here
// expressions that only return a single Value* are handled in emitSimpleExpr
std::shared_ptr<SugaredValue> emitSugaredExpr(Expr tree, size_t n_binders) {
switch(tree.kind()) {
case TK_VAR:
return environment_stack->getSugaredVar(Var(tree).name());
case '.': {
auto select = Select(tree);
auto sv = emitSugaredExpr(select.value(), 1);
return sv->attr(select.range(), method, select.selector().name());
}
case TK_APPLY: {
auto apply = Apply(tree);
auto inputs = getNamedValues(apply.inputs(), true, identity);
auto attributes = fmap(apply.attributes(), [&](const Attribute& attr) {
return NamedValue(attr.range(), attr.name().name(), emitExpr(attr.value(), identity));
});
// the apply is directly an identifier 'foo'
if(apply.callee().kind() == TK_VAR) {
return emitApplyIdent(Var(apply.callee()).name(), inputs, attributes, n_binders);
}
return emitApplyExpr(apply.callee(), inputs, attributes, n_binders);
} break;
default:
return std::make_shared<SimpleValue>(emitSimpleExpr(tree));
}
}
Value* emitSimpleExpr(
const TreeRef& tree) {
switch (tree->kind()) {
case '@':
case TK_POW:
case TK_AND:
case TK_OR:
case TK_NOT:
case TK_NE:
case TK_EQ:
case '<':
case '>':
case TK_LE:
case TK_GE:
case '*':
case '/':
case '+':
case '-':
case TK_UNARY_MINUS: {
const auto& inputs = tree->trees();
auto kind = getNodeKind(tree->kind(), inputs.size());
auto named_values = getNamedValues(inputs, /*maybe_unpack=*/false, identity);
return emitBuiltinCall(
tree->range(),
*method.graph(),
kind,
named_values,
{},
/*required=*/true);
}
case TK_STARRED: {
throw ErrorReport(tree) << "Unexpected starred expansion. File a bug report.";
}
case TK_CONST: {
return emitConst(Const(tree));
} break;
case TK_TRUE: {
return graph->insertConstant(true, tree->range());
} break;
case TK_FALSE: {
return graph->insertConstant(false, tree->range());
} break;
case TK_NONE: {
return emitNone(tree->range());
} break;
case TK_SLICE: {
return emitSlice(Slice(tree));
} break;
case TK_GATHER: {
const auto gather = Gather(tree);
return emitGather(
gather.range(), {gather.value(), gather.indices()});
} break;
case TK_IF_EXPR: {
return emitTernaryIf(TernaryIf(tree));
} break;
case TK_STRINGLITERAL: {
return emitStringLiteral(StringLiteral(tree));
} break;
case TK_LIST_LITERAL: {
auto ll = ListLiteral(tree);
auto values = getValues(ll.inputs(), /*maybe_unpack=*/true, identity);
if (values.size() == 0) {
throw ErrorReport(tree) << "Empty list literals not allowed. "
<< "Use _construct_empty_foo_list() instead. "
<< "`foo` can be `int`, `float` or `tensor`";
}
const auto elem_type = values.at(0)->type();
for (auto v : values) {
if (v->type() != elem_type) {
throw ErrorReport(tree)
<< "Lists must contain only a single type, expected: "
<< *elem_type << " but found " << *v->type() << " instead";
}
}
return graph->insertNode(graph->createList(elem_type, values))
->output();
} break;
case TK_TUPLE_LITERAL: {
auto ll = TupleLiteral(tree);
auto values = getValues(ll.inputs(), /*maybe_unpack=*/true, identity);
return graph->insertNode(graph->createTuple(values))->output();
} break;
default:
throw ErrorReport(tree) << "NYI: " << tree;
break;
}
}
Value* emitNone(SourceRange range) {
auto& g = *method.graph();
return g.insertNode(
g.create(prim::None, {}, 1)->setSourceLocation(
std::make_shared<SourceRange>(range)))->output();
}
Value* emitConst(const Const& c) {
if (c.isFloatingPoint())
return graph->insertConstant(c.asFloatingPoint(), c.range());
else
return graph->insertConstant(c.asIntegral(), c.range());
}
Value* emitStringLiteral(const StringLiteral& c) {
return insertConstant(*graph, c.text(), c.range());
}
// Desugars slice syntactic sugar foo[begin:end]
Value* emitSlice(const Slice& slice) {
const auto& loc = slice.range();
TreeList inputs = {slice.value(), slice.startOr(0)};
const auto applyInputs = Compound::create(TK_LIST, loc, std::move(inputs));
const auto input_values = getNamedValues(
applyInputs->trees(),
/*maybe_unpack*/ false,
identity);
NamedValue sliceable = input_values[0];
NamedValue begin = input_values[1];
NamedValue step = NamedValue(loc, "step", graph->insertConstant(1, loc));
// Build the input arguments
std::vector<NamedValue> args = {sliceable};
if (sliceable.value(*graph)->type()->kind() == TypeKind::DynamicType) {
// If the sliceable object is a tensor, specify a default dimension
args.emplace_back(loc, "dim", graph->insertConstant(0, loc));
}
args.push_back(begin);
const auto has_end = slice.end().present();
if (has_end) {
// If the user specified an `end` index, pass it down
args.emplace_back(loc, "end", emitExpr(Expr(slice.end().get()), identity));
}
return emitBuiltinCall(loc, *graph, aten::slice, args, {step}, true);
}
// Desugars gather syntactic sugar foo[i]
Value* emitGather(
const SourceRange& loc,
TreeList&& inputs) {
const auto applyInputs =
Compound::create(TK_LIST, loc, std::move(inputs));
auto input_values = getNamedValues(applyInputs->trees(),
/*maybe_unpack*/false,
identity);
NamedValue gatherable = input_values[0];
NamedValue idx = input_values[1];
if (gatherable.value(*graph)->type()->kind() == TypeKind::ListType) {
// if it's a list, emit a regular index selection op
return emitBuiltinCall(
loc, *graph, aten::select, {gatherable, idx}, {}, true);
} else {
// if it's a single tensor, map tensor[idx] -> tensor.select(0, idx)
NamedValue dim = NamedValue(loc, "dim", graph->insertConstant(0, loc));
return emitBuiltinCall(
loc, *graph, aten::select, {gatherable, dim, idx}, {}, true);
}
}
};
// support syntax sugar for x.foo(y, z) by allowing x.foo to return a
// callable value that will resolve to foo(x, y, z) when called.
std::shared_ptr<SugaredValue> SimpleValue::attr(SourceRange loc, Method & m, const std::string& field) {
return std::make_shared<BuiltinFunction>(field, NamedValue(loc, "self", value));
}
std::vector<Value*> inlineCallTo(Graph& g, Graph& callee, ArrayRef<Value*> inputs) {
std::unordered_map<Value*, Value*> value_map;
auto value_map_func = [&](Value* v) { return value_map.at(v); };
JIT_ASSERT(callee.inputs().size() == inputs.size());
for (size_t i = 0; i < inputs.size(); ++i) {
value_map[callee.inputs()[i]] = inputs[i];
}
for (auto* node : callee.nodes()) {
auto* new_node =
g.insertNode(g.createClone(node, value_map_func));
for (size_t i = 0; i < node->outputs().size(); ++i) {
value_map[node->outputs()[i]] = new_node->outputs()[i];
}
}
std::vector<Value*> outputs;
for (auto* output : callee.outputs()) {
outputs.push_back(value_map_func(output));
}
return outputs;
}
void defineMethodsInModule(Module & m, const std::vector<TypedDef>& definitions, const std::vector<Resolver>& resolvers, SugaredValuePtr self) {
FunctionTable table;
JIT_ASSERT(definitions.size() == resolvers.size());
auto resolver_it = resolvers.begin();
std::vector<Method*> methods;
for(TypedDef typed_def : definitions) {
const std::string& name = typed_def.def.name().name();
Resolver resolver = *resolver_it++;
auto creator = [typed_def, &table, resolver, self](Method& method) {
to_ir(typed_def, table, resolver, self, method);
};
Method& method = m.create_method(name, creator);
// if self is defined, then these are methods and do not go into the global namespace
// otherwise, they get defined together so we add them to the function table
// so the methods can see each other
if(!self) {
auto result = table.emplace(name, method);
JIT_ASSERT(result.second);
}
methods.push_back(&method);
}
for(Method* method : methods) {
method->ensure_defined();
}
}
void defineMethodsInModule(Module & m, const std::string& source, const Resolver& resolver, SugaredValuePtr self) {
Parser p(source);
std::vector<TypedDef> definitions;
std::vector<Resolver> resolvers;
while (p.lexer().cur().kind != TK_EOF) {
// TODO: Function schema
definitions.emplace_back(Def(p.parseFunction()), at::nullopt);
resolvers.push_back(resolver);
}
defineMethodsInModule(m, definitions, resolvers, self);
}
std::shared_ptr<Graph> compileFunction(TypedDef typed_def, const Resolver& resolver) {
Module m;
defineMethodsInModule(m, {typed_def}, {resolver}, nullptr);
return m.get_method(typed_def.def.name().name()).graph();
}
std::vector<std::shared_ptr<SugaredValue>> SimpleValue::asTuple(SourceRange loc, Method& m) {
if(value->type()->kind() == TypeKind::TupleType) {
auto outputs = createTupleUnpack(value);
return fmap(outputs, [](Value* v) -> std::shared_ptr<SugaredValue> {
return std::make_shared<SimpleValue>(v);
});
}
throw ErrorReport(loc) << value->type()->str() << " cannot be used as a tuple";
}
void ensureSizeMatches(SourceRange loc, size_t expected, size_t actual, const std::string& what) {
if(expected != actual) {
throw ErrorReport(loc) << "expected " << expected << " " << what << " but found " << actual;
}
}
} // namespace script
} // namespace jit
} // namespace torch