mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-06 12:20:52 +01:00
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/51754 This API allows you to manage multiple python interpreters in a single process to deploy PyTorch models packaged with torch.package. torch/csrc/deploy/deploy.h contains the API definition torch/csrc/deploy/test_deploy.cpp has some examples. Notes: * mutex is added to PyTorchStreamReader to make it safe to use from multiple threads at once. * USE_DEPLOY is only true for the special libtorch_deployinterpreter.so library, when enabled we use a hash table to maintain PyObject <> at::Tensor mappping rather than the internal pointer in Tensor since >1 interpreter may have a reference to the tensor. * serialization.py has some additional functions for creating pickle objects but keeping storages in memory for use transfering tensors between interpreters Test Plan: Imported from OSS Reviewed By: wconstab Differential Revision: D26329468 Pulled By: zdevito fbshipit-source-id: d75f4ebb9a27f1d911179d9996041bcb3ca04a07
75 lines
2.7 KiB
Python
75 lines
2.7 KiB
Python
import io
|
|
import torch
|
|
import importlib
|
|
from torch.package._custom_import_pickler import create_custom_import_pickler
|
|
from torch.package.importer import _UnpicklerWrapper
|
|
from torch.package import PackageImporter
|
|
from torch.serialization import _maybe_decode_ascii
|
|
from typing import Callable
|
|
from types import ModuleType
|
|
|
|
def _save_storages(importer, obj):
|
|
serialized_storages = []
|
|
serialized_dtypes = []
|
|
|
|
def persistent_id(obj):
|
|
# FIXME: the docs say that persistent_id should only return a string
|
|
# but torch store returns tuples. This works only in the binary protocol
|
|
# see
|
|
# https://docs.python.org/2/library/pickle.html#pickling-and-unpickling-external-objects
|
|
# https://github.com/python/cpython/blob/master/Lib/pickle.py#L527-L537
|
|
if torch.is_storage(obj):
|
|
serialized_storages.append(obj)
|
|
serialized_dtypes.append(obj.dtype)
|
|
return ('storage', len(serialized_storages) - 1)
|
|
return None
|
|
|
|
# Write the pickle data for `obj`
|
|
data_buf = io.BytesIO()
|
|
importer = importer if isinstance(importer, torch.package.PackageImporter) else None
|
|
if importer is not None:
|
|
importers = [importer.import_module, importlib.import_module]
|
|
else:
|
|
importers = [importlib.import_module]
|
|
pickler = create_custom_import_pickler(data_buf, importers)
|
|
pickler.persistent_id = persistent_id
|
|
pickler.dump(obj)
|
|
data_value = data_buf.getvalue()
|
|
return data_value, serialized_storages, serialized_dtypes, importer.zip_reader if importer else None
|
|
|
|
def _load_storages(id, zip_reader, obj_bytes, serialized_storages):
|
|
|
|
def persistent_load(saved_id):
|
|
assert isinstance(saved_id, tuple)
|
|
typename = _maybe_decode_ascii(saved_id[0])
|
|
data = saved_id[1:]
|
|
|
|
assert typename == 'storage', \
|
|
f"Unknown typename for persistent_load, expected 'storage' but got '{typename}'"
|
|
return serialized_storages[data[0]]
|
|
|
|
|
|
import_module : Callable[[str], ModuleType] = importlib.import_module
|
|
if zip_reader is not None:
|
|
importer = _get_package(zip_reader)
|
|
|
|
def import_module(name: str):
|
|
try:
|
|
return importer.import_module(name)
|
|
except ModuleNotFoundError:
|
|
return importlib.import_module(name)
|
|
|
|
unpickler = _UnpicklerWrapper(import_module, io.BytesIO(obj_bytes))
|
|
unpickler.persistent_load = persistent_load
|
|
result = _deploy_objects[id] = unpickler.load()
|
|
return result
|
|
|
|
def _get_package(zip_reader):
|
|
if zip_reader not in _raw_packages:
|
|
_raw_packages[zip_reader] = PackageImporter(zip_reader)
|
|
return _raw_packages[zip_reader]
|
|
|
|
|
|
_raw_packages: dict = {}
|
|
_deploy_objects: dict = {}
|