mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-06 12:20:52 +01:00
* [GanH]: two_task_discriminator as titled and adding label smooth * [Dper2] Simplified UI options needed for blob magnitude visualization * [GanH]: fix tags as titled * Added type and shape inference for GatherRange operator This helps with type / shape inference when using this operator in layers. Also just a nice to have in general. * Demonstrate Caffe2 exception handling with StoreHandlerTimeoutError in Python We'd like to catch and recover from certain Caffe2 net exceptions. Use this diff to demonstrate a pattern of registering a pybind exception mapping and catching in Pythonusing caffe2::StoreHandlerTimeoutException. * Bind Gloo IoException to IoError in Python Allow peer failure handling and recovery using an exception based mechanism. This diff registers gloo::IoException with pybind. * [GanH]: add label smoothing to softmax with loss as titled * [C2] Enable LARS in Adagrad and hook it to DPER * [DPER] Don't pass LayerModelHelper in create_trainer_nodes Since we're planning to get rid of it eventually and I want to get access to NetDef only interface ASAP - I'm looking towards removing all references to LMH, where we don't really need them. * fix bugs in LambdaRankNdcgOp the loss and gradient in LambdaRankNdcgOp are incorrect. The loss should be negative log of probs instead of log. * Restrict thread pool on iOS to only big cores Historically, iPhones exposed only one type of cores, and Caffe2 thread pool used all of them. However, iPhone 8/iPhone X exposes 2 big + 4 LITTLE cores. As our thread pool doesn't support work stealing or other forms of load balancing, fast cores end up waiting for the slow ones, and it may be better to restrict execution to only 2 fast cores, like we do on Android. * Remove SparseLength Sum/WeightedSum/Mean operators with fp16 engine Remove SparseLength Sum/WeightedSum/Mean operators with fp16 engine * make clang happy and get fewer warnings make clang happy and get fewer warnings * [Personalization] Support add_output_schema() in layer_model_helper Problem: Currently the output_schema of sparse_nn can only be set once. https://fburl.com/efth5zer. Solution: For flexibility, we want to add fields to output_schema incrementally. Plan: Wrap the change of `model._output_schema` into a new function `add_output_schema()` for adding additional output_schema. Callsite: The add_output_schema() should be called instead at https://fburl.com/efth5zer Reference: The newly added `add_output_schema()` will be similar to `add_loss()` in https://fburl.com/t2ii8njh
1702 lines
60 KiB
Python
1702 lines
60 KiB
Python
# Copyright (c) 2016-present, Facebook, Inc.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
##############################################################################
|
|
|
|
from __future__ import absolute_import
|
|
from __future__ import division
|
|
from __future__ import print_function
|
|
from __future__ import unicode_literals
|
|
|
|
import hypothesis.strategies as st
|
|
import numpy as np
|
|
import numpy.testing as npt
|
|
import unittest
|
|
from hypothesis import given
|
|
|
|
import caffe2.python.hypothesis_test_util as hu
|
|
|
|
from caffe2.python import (
|
|
layer_model_instantiator,
|
|
core,
|
|
schema,
|
|
workspace,
|
|
)
|
|
from caffe2.python.layers.layers import (
|
|
InstantiationContext,
|
|
)
|
|
from caffe2.python.layers.tags import Tags
|
|
from caffe2.python.layer_test_util import (
|
|
LayersTestCase,
|
|
OpSpec,
|
|
)
|
|
from caffe2.python.layers.layers import (
|
|
IdList,
|
|
set_request_only,
|
|
is_request_only_scalar,
|
|
get_key,
|
|
)
|
|
|
|
import logging
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
class TestLayers(LayersTestCase):
|
|
def testAddLoss(self):
|
|
input_record_LR = self.new_record(
|
|
schema.Struct(
|
|
('label', schema.Scalar((np.float64, (1, )))),
|
|
('logit', schema.Scalar((np.float32, (2, )))),
|
|
('weight', schema.Scalar((np.float64, (1, ))))
|
|
)
|
|
)
|
|
loss_LR = self.model.BatchLRLoss(input_record_LR)
|
|
|
|
self.model.add_loss(loss_LR)
|
|
assert 'unnamed' in self.model.loss
|
|
self.assertEqual(
|
|
schema.Scalar((np.float32, tuple())), self.model.loss.unnamed
|
|
)
|
|
self.assertEqual(loss_LR, self.model.loss.unnamed)
|
|
|
|
self.model.add_loss(loss_LR, 'addLoss')
|
|
assert 'addLoss' in self.model.loss
|
|
self.assertEqual(
|
|
schema.Scalar((np.float32, tuple())), self.model.loss.addLoss
|
|
)
|
|
self.assertEqual(loss_LR, self.model.loss.addLoss)
|
|
|
|
self.model.add_loss(
|
|
schema.Scalar(
|
|
dtype=np.float32, blob=core.BlobReference('loss_blob_1')
|
|
), 'addLoss'
|
|
)
|
|
assert 'addLoss_auto_0' in self.model.loss
|
|
self.assertEqual(
|
|
schema.Scalar((np.float32, tuple())), self.model.loss.addLoss_auto_0
|
|
)
|
|
assert core.BlobReference('loss_blob_1') in self.model.loss.field_blobs()
|
|
|
|
self.model.add_loss(
|
|
schema.Struct(
|
|
(
|
|
'structName', schema.Scalar(
|
|
dtype=np.float32,
|
|
blob=core.BlobReference('loss_blob_2')
|
|
)
|
|
)
|
|
), 'addLoss'
|
|
)
|
|
assert 'addLoss_auto_1' in self.model.loss
|
|
self.assertEqual(
|
|
schema.Struct(('structName', schema.Scalar((np.float32, tuple())))),
|
|
self.model.loss.addLoss_auto_1
|
|
)
|
|
assert core.BlobReference('loss_blob_2') in self.model.loss.field_blobs()
|
|
|
|
loss_in_tuple_0 = schema.Scalar(
|
|
dtype=np.float32, blob=core.BlobReference('loss_blob_in_tuple_0')
|
|
)
|
|
|
|
loss_in_tuple_1 = schema.Scalar(
|
|
dtype=np.float32, blob=core.BlobReference('loss_blob_in_tuple_1')
|
|
)
|
|
|
|
loss_tuple = schema.NamedTuple(
|
|
'loss_in_tuple', * [loss_in_tuple_0, loss_in_tuple_1]
|
|
)
|
|
self.model.add_loss(loss_tuple, 'addLoss')
|
|
assert 'addLoss_auto_2' in self.model.loss
|
|
self.assertEqual(
|
|
schema.Struct(
|
|
('loss_in_tuple_0', schema.Scalar((np.float32, tuple()))),
|
|
('loss_in_tuple_1', schema.Scalar((np.float32, tuple())))
|
|
), self.model.loss.addLoss_auto_2
|
|
)
|
|
assert core.BlobReference('loss_blob_in_tuple_0')\
|
|
in self.model.loss.field_blobs()
|
|
assert core.BlobReference('loss_blob_in_tuple_1')\
|
|
in self.model.loss.field_blobs()
|
|
|
|
def testAddOutputSchema(self):
|
|
# add the first field
|
|
self.model.add_output_schema('struct', schema.Struct())
|
|
expected_output_schema = schema.Struct(('struct', schema.Struct()))
|
|
self.assertEqual(
|
|
self.model.output_schema,
|
|
expected_output_schema,
|
|
)
|
|
|
|
# add the second field
|
|
self.model.add_output_schema('scalar', schema.Scalar(np.float64))
|
|
expected_output_schema = schema.Struct(
|
|
('struct', schema.Struct()),
|
|
('scalar', schema.Scalar(np.float64)),
|
|
)
|
|
self.assertEqual(
|
|
self.model.output_schema,
|
|
expected_output_schema,
|
|
)
|
|
|
|
# overwrite a field should raise
|
|
with self.assertRaises(AssertionError):
|
|
self.model.add_output_schema('scalar', schema.Struct())
|
|
|
|
def _test_net(self, net, ops_list):
|
|
"""
|
|
Helper function to assert the net contains some set of operations and
|
|
then to run the net.
|
|
|
|
Inputs:
|
|
net -- the network to test and run
|
|
ops_list -- the list of operation specifications to check for
|
|
in the net
|
|
"""
|
|
ops_output = self.assertNetContainOps(net, ops_list)
|
|
workspace.RunNetOnce(net)
|
|
return ops_output
|
|
|
|
def testFCWithoutBias(self):
|
|
output_dims = 2
|
|
fc_without_bias = self.model.FCWithoutBias(
|
|
self.model.input_feature_schema.float_features, output_dims)
|
|
self.model.output_schema = fc_without_bias
|
|
|
|
self.assertEqual(
|
|
schema.Scalar((np.float32, (output_dims, ))),
|
|
fc_without_bias
|
|
)
|
|
|
|
train_init_net, train_net = self.get_training_nets()
|
|
|
|
init_ops = self.assertNetContainOps(
|
|
train_init_net,
|
|
[
|
|
OpSpec("UniformFill", None, None),
|
|
]
|
|
)
|
|
|
|
mat_mul_spec = OpSpec(
|
|
"MatMul",
|
|
[
|
|
self.model.input_feature_schema.float_features(),
|
|
init_ops[0].output[0],
|
|
],
|
|
fc_without_bias.field_blobs()
|
|
)
|
|
|
|
self.assertNetContainOps(train_net, [mat_mul_spec])
|
|
|
|
predict_net = self.get_predict_net()
|
|
self.assertNetContainOps(predict_net, [mat_mul_spec])
|
|
|
|
def testSparseLookupSumPooling(self):
|
|
record = schema.NewRecord(self.model.net, schema.Struct(
|
|
('sparse', schema.Struct(
|
|
('sparse_feature_0', schema.List(
|
|
schema.Scalar(np.int64,
|
|
metadata=schema.Metadata(categorical_limit=1000)))),
|
|
)),
|
|
))
|
|
embedding_dim = 64
|
|
embedding_after_pooling = self.model.SparseLookup(
|
|
record.sparse.sparse_feature_0, [embedding_dim], 'Sum')
|
|
self.model.output_schema = schema.Struct()
|
|
self.assertEqual(
|
|
schema.Scalar((np.float32, (embedding_dim, ))),
|
|
embedding_after_pooling
|
|
)
|
|
|
|
train_init_net, train_net = self.get_training_nets()
|
|
|
|
init_ops = self.assertNetContainOps(
|
|
train_init_net,
|
|
[
|
|
OpSpec("UniformFill", None, None),
|
|
OpSpec("ConstantFill", None, None),
|
|
]
|
|
)
|
|
sparse_lookup_op_spec = OpSpec(
|
|
'SparseLengthsSum',
|
|
[
|
|
init_ops[0].output[0],
|
|
record.sparse.sparse_feature_0.items(),
|
|
record.sparse.sparse_feature_0.lengths(),
|
|
],
|
|
[embedding_after_pooling()]
|
|
)
|
|
self.assertNetContainOps(train_net, [sparse_lookup_op_spec])
|
|
|
|
predict_net = self.get_predict_net()
|
|
self.assertNetContainOps(predict_net, [sparse_lookup_op_spec])
|
|
|
|
@given(
|
|
use_hashing=st.booleans(),
|
|
modulo=st.integers(min_value=100, max_value=200),
|
|
)
|
|
def testSparseFeatureHashIdList(self, use_hashing, modulo):
|
|
record = schema.NewRecord(
|
|
self.model.net,
|
|
schema.List(schema.Scalar(
|
|
np.int64,
|
|
metadata=schema.Metadata(categorical_limit=60000)
|
|
))
|
|
)
|
|
output_schema = self.model.SparseFeatureHash(
|
|
record,
|
|
modulo=modulo,
|
|
use_hashing=use_hashing)
|
|
|
|
self.model.output_schema = output_schema
|
|
|
|
self.assertEqual(len(self.model.layers), 1)
|
|
self.assertEqual(output_schema._items.metadata.categorical_limit,
|
|
modulo)
|
|
train_init_net, train_net = self.get_training_nets()
|
|
|
|
@given(
|
|
use_hashing=st.booleans(),
|
|
modulo=st.integers(min_value=100, max_value=200),
|
|
)
|
|
def testSparseFeatureHashIdScoreList(self, use_hashing, modulo):
|
|
record = schema.NewRecord(self.model.net,
|
|
schema.Map(schema.Scalar(np.int64,
|
|
metadata=schema.Metadata(
|
|
categorical_limit=60000)),
|
|
np.float32))
|
|
|
|
output_schema = self.model.SparseFeatureHash(
|
|
record,
|
|
modulo=modulo,
|
|
use_hashing=use_hashing)
|
|
|
|
self.model.output_schema = output_schema
|
|
|
|
self.assertEqual(len(self.model.layers), 1)
|
|
self.assertEqual(output_schema._items.keys.metadata.categorical_limit,
|
|
modulo)
|
|
train_init_net, train_net = self.get_training_nets()
|
|
|
|
def testSparseLookupIncorrectPositionWeightedOnIdList(self):
|
|
'''
|
|
Currently the implementation of SparseLookup assumed input is id_score_list
|
|
when use PositionWeighted.
|
|
'''
|
|
record = schema.NewRecord(self.model.net, schema.Struct(
|
|
('sparse', schema.Struct(
|
|
('sparse_feature_0', schema.List(
|
|
schema.Scalar(np.int64,
|
|
metadata=schema.Metadata(categorical_limit=1000)))),
|
|
)),
|
|
))
|
|
|
|
embedding_dim = 64
|
|
with self.assertRaises(AssertionError):
|
|
self.model.SparseLookup(
|
|
record.sparse.sparse_feature_0, [embedding_dim], 'PositionWeighted')
|
|
|
|
def testSparseLookupPositionWeightedOnIdList(self):
|
|
record = schema.NewRecord(self.model.net, schema.Struct(
|
|
('sparse', schema.Struct(
|
|
('sparse_feature_0', schema.List(
|
|
schema.Scalar(np.int64,
|
|
metadata=schema.Metadata(categorical_limit=1000)))),
|
|
)),
|
|
))
|
|
|
|
# convert id_list to id_score_list with PositionWeighted layer
|
|
sparse_segment = record.sparse.sparse_feature_0
|
|
pos_w_layer = self.model.PositionWeighted(sparse_segment)
|
|
|
|
sparse_segment = schema.Map(
|
|
keys=get_key(sparse_segment),
|
|
values=pos_w_layer.position_weights,
|
|
lengths_blob=sparse_segment.lengths
|
|
)
|
|
|
|
embedding_dim = 64
|
|
embedding_after_pooling = self.model.SparseLookup(
|
|
sparse_segment, [embedding_dim], 'PositionWeighted')
|
|
self.model.output_schema = schema.Struct()
|
|
self.assertEqual(
|
|
schema.Scalar((np.float32, (embedding_dim, ))),
|
|
embedding_after_pooling
|
|
)
|
|
|
|
train_init_net, train_net = self.get_training_nets()
|
|
|
|
self.assertNetContainOps(
|
|
train_init_net,
|
|
[
|
|
OpSpec("ConstantFill", None, None), # position_weights/pos_w
|
|
OpSpec("UniformFill", None, None),
|
|
OpSpec("ConstantFill", None, None),
|
|
]
|
|
)
|
|
self.assertNetContainOps(train_net, [
|
|
OpSpec("LengthsRangeFill", None, None),
|
|
OpSpec("Gather", None, None),
|
|
OpSpec("SparseLengthsWeightedSum", None, None),
|
|
])
|
|
|
|
predict_net = self.get_predict_net()
|
|
self.assertNetContainOps(predict_net, [
|
|
OpSpec("LengthsRangeFill", None, None),
|
|
OpSpec("Gather", None, None),
|
|
OpSpec("SparseLengthsWeightedSum", None, None),
|
|
])
|
|
|
|
def testSparseLookupPositionWeightedOnIdScoreList(self):
|
|
record = schema.NewRecord(self.model.net, schema.Struct(
|
|
('sparse', schema.Struct(
|
|
('id_score_list_0', schema.Map(
|
|
schema.Scalar(
|
|
np.int64,
|
|
metadata=schema.Metadata(
|
|
categorical_limit=1000
|
|
),
|
|
),
|
|
np.float32
|
|
)),
|
|
)),
|
|
))
|
|
|
|
embedding_dim = 64
|
|
embedding_after_pooling = self.model.SparseLookup(
|
|
record.sparse.id_score_list_0, [embedding_dim], 'PositionWeighted')
|
|
self.model.output_schema = schema.Struct()
|
|
self.assertEqual(
|
|
schema.Scalar((np.float32, (embedding_dim, ))),
|
|
embedding_after_pooling
|
|
)
|
|
|
|
train_init_net, train_net = self.get_training_nets()
|
|
|
|
init_ops = self.assertNetContainOps(
|
|
train_init_net,
|
|
[
|
|
OpSpec("UniformFill", None, None),
|
|
OpSpec("ConstantFill", None, None),
|
|
]
|
|
)
|
|
sparse_lookup_op_spec = OpSpec(
|
|
'SparseLengthsWeightedSum',
|
|
[
|
|
init_ops[0].output[0],
|
|
record.sparse.id_score_list_0.values(),
|
|
record.sparse.id_score_list_0.keys(),
|
|
record.sparse.id_score_list_0.lengths(),
|
|
],
|
|
[embedding_after_pooling()]
|
|
)
|
|
self.assertNetContainOps(train_net, [sparse_lookup_op_spec])
|
|
|
|
predict_net = self.get_predict_net()
|
|
self.assertNetContainOps(predict_net, [sparse_lookup_op_spec])
|
|
|
|
def testPairwiseDotProductWithAllEmbeddings(self):
|
|
embedding_dim = 64
|
|
N = 5
|
|
record = schema.NewRecord(self.model.net, schema.Struct(
|
|
('all_embeddings', schema.Scalar(
|
|
((np.float32, (N, embedding_dim)))
|
|
)),
|
|
))
|
|
current = self.model.PairwiseDotProduct(
|
|
record, N * N)
|
|
|
|
self.assertEqual(
|
|
schema.Scalar((np.float32, (N * N, ))),
|
|
current
|
|
)
|
|
|
|
train_init_net, train_net = self.get_training_nets()
|
|
self.assertNetContainOps(train_init_net, [])
|
|
self.assertNetContainOps(train_net, [
|
|
OpSpec("BatchMatMul", None, None),
|
|
OpSpec("Flatten", None, None),
|
|
])
|
|
|
|
def testPairwiseDotProductWithXandYEmbeddings(self):
|
|
embedding_dim = 64
|
|
record = schema.NewRecord(self.model.net, schema.Struct(
|
|
('x_embeddings', schema.Scalar(
|
|
((np.float32, (5, embedding_dim)))
|
|
)),
|
|
('y_embeddings', schema.Scalar(
|
|
((np.float32, (6, embedding_dim)))
|
|
)),
|
|
))
|
|
current = self.model.PairwiseDotProduct(
|
|
record, 5 * 6)
|
|
|
|
self.assertEqual(
|
|
schema.Scalar((np.float32, (5 * 6, ))),
|
|
current
|
|
)
|
|
|
|
train_init_net, train_net = self.get_training_nets()
|
|
self.assertNetContainOps(train_init_net, [])
|
|
self.assertNetContainOps(train_net, [
|
|
OpSpec("BatchMatMul", None, None),
|
|
OpSpec("Flatten", None, None),
|
|
])
|
|
|
|
def testPairwiseDotProductWithXandYEmbeddingsAndGather(self):
|
|
embedding_dim = 64
|
|
|
|
output_idx = [1, 3, 5]
|
|
output_idx_blob = self.model.add_global_constant(
|
|
str(self.model.net.NextScopedBlob('pairwise_dot_product_gather')),
|
|
output_idx,
|
|
dtype=np.int32,
|
|
)
|
|
indices_to_gather = schema.Scalar(
|
|
(np.int32, len(output_idx)),
|
|
output_idx_blob,
|
|
)
|
|
|
|
record = schema.NewRecord(self.model.net, schema.Struct(
|
|
('x_embeddings', schema.Scalar(
|
|
((np.float32, (5, embedding_dim)))
|
|
)),
|
|
('y_embeddings', schema.Scalar(
|
|
((np.float32, (6, embedding_dim)))
|
|
)),
|
|
('indices_to_gather', indices_to_gather),
|
|
))
|
|
current = self.model.PairwiseDotProduct(
|
|
record, len(output_idx))
|
|
|
|
# This assert is not necessary,
|
|
# output size is passed into PairwiseDotProduct
|
|
self.assertEqual(
|
|
schema.Scalar((np.float32, (len(output_idx), ))),
|
|
current
|
|
)
|
|
|
|
train_init_net, train_net = self.get_training_nets()
|
|
self.assertNetContainOps(train_init_net, [])
|
|
self.assertNetContainOps(train_net, [
|
|
OpSpec("BatchMatMul", None, None),
|
|
OpSpec("Flatten", None, None),
|
|
OpSpec("BatchGather", None, None),
|
|
])
|
|
|
|
def testPairwiseDotProductIncorrectInput(self):
|
|
embedding_dim = 64
|
|
record = schema.NewRecord(self.model.net, schema.Struct(
|
|
('x_embeddings', schema.Scalar(
|
|
((np.float32, (5, embedding_dim)))
|
|
)),
|
|
))
|
|
with self.assertRaises(AssertionError):
|
|
self.model.PairwiseDotProduct(
|
|
record, 25)
|
|
|
|
record = schema.NewRecord(self.model.net, schema.Struct(
|
|
('all_embeddings', schema.List(np.float32))
|
|
))
|
|
with self.assertRaises(AssertionError):
|
|
self.model.PairwiseDotProduct(
|
|
record, 25)
|
|
|
|
def testConcat(self):
|
|
embedding_dim = 64
|
|
input_record = self.new_record(schema.Struct(
|
|
('input1', schema.Scalar((np.float32, (embedding_dim, )))),
|
|
('input2', schema.Scalar((np.float32, (embedding_dim, )))),
|
|
('input3', schema.Scalar((np.float32, (embedding_dim, )))),
|
|
))
|
|
|
|
output = self.model.Concat(input_record)
|
|
self.assertEqual(
|
|
schema.Scalar((np.float32, ((len(input_record.fields) * embedding_dim, )))),
|
|
output
|
|
)
|
|
|
|
# Note that in Concat layer we assume first dimension is batch.
|
|
# so input is B * embedding_dim
|
|
# add_axis=1 make it B * 1 * embedding_dim
|
|
# concat on axis=1 make it B * N * embedding_dim
|
|
output = self.model.Concat(input_record, axis=1, add_axis=1)
|
|
self.assertEqual(
|
|
schema.Scalar((np.float32, ((len(input_record.fields), embedding_dim)))),
|
|
output
|
|
)
|
|
|
|
def testSamplingTrain(self):
|
|
output_dims = 1000
|
|
|
|
indices = self.new_record(schema.Scalar((np.int32, (10,))))
|
|
sampling_prob = self.new_record(schema.Scalar((np.float32, (10, ))))
|
|
|
|
sampled_fc = self.model.SamplingTrain(
|
|
schema.Struct(
|
|
('input', self.model.input_feature_schema.float_features),
|
|
('indices', indices),
|
|
('sampling_prob', sampling_prob),
|
|
),
|
|
"FC",
|
|
output_dims,
|
|
)
|
|
self.model.output_schema = sampled_fc
|
|
|
|
# Check that we don't add prediction layer into the model
|
|
self.assertEqual(1, len(self.model.layers))
|
|
|
|
self.assertEqual(
|
|
schema.Scalar((np.float32, (output_dims, ))),
|
|
sampled_fc
|
|
)
|
|
|
|
train_init_net, train_net = self.get_training_nets()
|
|
|
|
init_ops = self.assertNetContainOps(
|
|
train_init_net,
|
|
[
|
|
OpSpec("UniformFill", None, None),
|
|
OpSpec("UniformFill", None, None),
|
|
]
|
|
)
|
|
|
|
sampled_fc_layer = self.model.layers[0]
|
|
|
|
gather_w_spec = OpSpec(
|
|
"Gather",
|
|
[
|
|
init_ops[0].output[0],
|
|
indices(),
|
|
],
|
|
[
|
|
sampled_fc_layer._prediction_layer.train_param_blobs[0]
|
|
]
|
|
)
|
|
gather_b_spec = OpSpec(
|
|
"Gather",
|
|
[
|
|
init_ops[1].output[0],
|
|
indices(),
|
|
],
|
|
[
|
|
sampled_fc_layer._prediction_layer.train_param_blobs[1]
|
|
]
|
|
)
|
|
train_fc_spec = OpSpec(
|
|
"FC",
|
|
[
|
|
self.model.input_feature_schema.float_features(),
|
|
] + sampled_fc_layer._prediction_layer.train_param_blobs,
|
|
sampled_fc.field_blobs()
|
|
)
|
|
log_spec = OpSpec("Log", [sampling_prob()], [None])
|
|
sub_spec = OpSpec(
|
|
"Sub",
|
|
[sampled_fc.field_blobs()[0], None],
|
|
sampled_fc.field_blobs()
|
|
)
|
|
|
|
train_ops = self.assertNetContainOps(
|
|
train_net,
|
|
[gather_w_spec, gather_b_spec, train_fc_spec, log_spec, sub_spec])
|
|
|
|
self.assertEqual(train_ops[3].output[0], train_ops[4].input[1])
|
|
|
|
predict_net = self.get_predict_net()
|
|
self.assertNetContainOps(
|
|
predict_net,
|
|
[
|
|
OpSpec(
|
|
"FC",
|
|
[
|
|
self.model.input_feature_schema.float_features(),
|
|
init_ops[0].output[0],
|
|
init_ops[1].output[0],
|
|
],
|
|
sampled_fc.field_blobs()
|
|
)
|
|
]
|
|
)
|
|
|
|
def testBatchLRLoss(self):
|
|
input_record = self.new_record(schema.Struct(
|
|
('label', schema.Scalar((np.float64, (1,)))),
|
|
('logit', schema.Scalar((np.float32, (2,)))),
|
|
('weight', schema.Scalar((np.float64, (1,))))
|
|
))
|
|
loss = self.model.BatchLRLoss(input_record)
|
|
self.assertEqual(schema.Scalar((np.float32, tuple())), loss)
|
|
|
|
def testMarginRankLoss(self):
|
|
input_record = self.new_record(schema.Struct(
|
|
('pos_prediction', schema.Scalar((np.float32, (1,)))),
|
|
('neg_prediction', schema.List(np.float32)),
|
|
))
|
|
pos_items = np.array([0.1, 0.2, 0.3], dtype=np.float32)
|
|
neg_lengths = np.array([1, 2, 3], dtype=np.int32)
|
|
neg_items = np.array([0.1, 0.2, 0.3, 0.4, 0.5, 0.6], dtype=np.float32)
|
|
schema.FeedRecord(
|
|
input_record,
|
|
[pos_items, neg_lengths, neg_items]
|
|
)
|
|
loss = self.model.MarginRankLoss(input_record)
|
|
self.run_train_net_forward_only()
|
|
self.assertEqual(schema.Scalar((np.float32, tuple())), loss)
|
|
|
|
def testBatchMSELoss(self):
|
|
input_record = self.new_record(schema.Struct(
|
|
('label', schema.Scalar((np.float64, (1,)))),
|
|
('prediction', schema.Scalar((np.float32, (2,)))),
|
|
))
|
|
loss = self.model.BatchMSELoss(input_record)
|
|
self.assertEqual(schema.Scalar((np.float32, tuple())), loss)
|
|
|
|
def testBatchSigmoidCrossEntropyLoss(self):
|
|
input_record = self.new_record(schema.Struct(
|
|
('label', schema.Scalar((np.float32, (32,)))),
|
|
('prediction', schema.Scalar((np.float32, (32,))))
|
|
))
|
|
loss = self.model.BatchSigmoidCrossEntropyLoss(input_record)
|
|
self.assertEqual(schema.Scalar((np.float32, tuple())), loss)
|
|
|
|
def testBatchSoftmaxLoss(self):
|
|
input_record = self.new_record(schema.Struct(
|
|
('label', schema.Scalar((np.float32, tuple()))),
|
|
('prediction', schema.Scalar((np.float32, (32,))))
|
|
))
|
|
loss = self.model.BatchSoftmaxLoss(input_record)
|
|
self.assertEqual(schema.Struct(
|
|
('softmax', schema.Scalar((np.float32, (32,)))),
|
|
('loss', schema.Scalar(np.float32)),
|
|
), loss)
|
|
|
|
def testBatchSoftmaxLossWeight(self):
|
|
input_record = self.new_record(schema.Struct(
|
|
('label', schema.Scalar((np.float32, tuple()))),
|
|
('prediction', schema.Scalar((np.float32, (32,)))),
|
|
('weight', schema.Scalar((np.float64, (1,))))
|
|
))
|
|
loss = self.model.BatchSoftmaxLoss(input_record)
|
|
self.assertEqual(schema.Struct(
|
|
('softmax', schema.Scalar((np.float32, (32,)))),
|
|
('loss', schema.Scalar(np.float32)),
|
|
), loss)
|
|
|
|
@given(
|
|
X=hu.arrays(dims=[2, 5]),
|
|
)
|
|
def testBatchNormalization(self, X):
|
|
input_record = self.new_record(schema.Scalar((np.float32, (5,))))
|
|
schema.FeedRecord(input_record, [X])
|
|
bn_output = self.model.BatchNormalization(input_record)
|
|
self.assertEqual(schema.Scalar((np.float32, (5,))), bn_output)
|
|
self.model.output_schema = schema.Struct()
|
|
|
|
train_init_net, train_net = self.get_training_nets()
|
|
|
|
init_ops = self.assertNetContainOps(
|
|
train_init_net,
|
|
[
|
|
OpSpec("ConstantFill", None, None),
|
|
OpSpec("ConstantFill", None, None),
|
|
OpSpec("ConstantFill", None, None),
|
|
OpSpec("ConstantFill", None, None),
|
|
]
|
|
)
|
|
|
|
input_blob = input_record.field_blobs()[0]
|
|
output_blob = bn_output.field_blobs()[0]
|
|
|
|
expand_dims_spec = OpSpec(
|
|
"ExpandDims",
|
|
[input_blob],
|
|
None,
|
|
)
|
|
|
|
train_bn_spec = OpSpec(
|
|
"SpatialBN",
|
|
[None, init_ops[0].output[0], init_ops[1].output[0],
|
|
init_ops[2].output[0], init_ops[3].output[0]],
|
|
[output_blob, init_ops[2].output[0], init_ops[3].output[0], None, None],
|
|
{'is_test': 0, 'order': 'NCHW', 'momentum': 0.9},
|
|
)
|
|
|
|
test_bn_spec = OpSpec(
|
|
"SpatialBN",
|
|
[None, init_ops[0].output[0], init_ops[1].output[0],
|
|
init_ops[2].output[0], init_ops[3].output[0]],
|
|
[output_blob],
|
|
{'is_test': 1, 'order': 'NCHW', 'momentum': 0.9},
|
|
)
|
|
|
|
squeeze_spec = OpSpec(
|
|
"Squeeze",
|
|
[output_blob],
|
|
[output_blob],
|
|
)
|
|
|
|
self.assertNetContainOps(
|
|
train_net,
|
|
[expand_dims_spec, train_bn_spec, squeeze_spec]
|
|
)
|
|
|
|
eval_net = self.get_eval_net()
|
|
|
|
self.assertNetContainOps(
|
|
eval_net,
|
|
[expand_dims_spec, test_bn_spec, squeeze_spec]
|
|
)
|
|
|
|
predict_net = self.get_predict_net()
|
|
|
|
self.assertNetContainOps(
|
|
predict_net,
|
|
[expand_dims_spec, test_bn_spec, squeeze_spec]
|
|
)
|
|
|
|
workspace.RunNetOnce(train_init_net)
|
|
workspace.RunNetOnce(train_net)
|
|
|
|
schema.FeedRecord(input_record, [X])
|
|
workspace.RunNetOnce(eval_net)
|
|
|
|
schema.FeedRecord(input_record, [X])
|
|
workspace.RunNetOnce(predict_net)
|
|
|
|
@given(
|
|
X=hu.arrays(dims=[5, 2]),
|
|
num_to_collect=st.integers(min_value=1, max_value=10),
|
|
)
|
|
def testLastNWindowCollector(self, X, num_to_collect):
|
|
input_record = self.new_record(schema.Scalar(np.float32))
|
|
schema.FeedRecord(input_record, [X])
|
|
last_n = self.model.LastNWindowCollector(input_record, num_to_collect)
|
|
self.run_train_net_forward_only()
|
|
output_record = schema.FetchRecord(last_n.last_n)
|
|
start = max(0, 5 - num_to_collect)
|
|
npt.assert_array_equal(X[start:], output_record())
|
|
num_visited = schema.FetchRecord(last_n.num_visited)
|
|
npt.assert_array_equal([5], num_visited())
|
|
|
|
def testUniformSampling(self):
|
|
input_record = self.new_record(schema.Scalar(np.int32))
|
|
input_array = np.array([3, 10, 11, 15, 20, 99], dtype=np.int32)
|
|
schema.FeedRecord(input_record, [input_array])
|
|
num_samples = 20
|
|
num_elements = 100
|
|
uniform_sampling_output = self.model.UniformSampling(
|
|
input_record, num_samples, num_elements)
|
|
self.model.loss = uniform_sampling_output
|
|
self.run_train_net()
|
|
samples = workspace.FetchBlob(uniform_sampling_output.samples())
|
|
sampling_prob = workspace.FetchBlob(
|
|
uniform_sampling_output.sampling_prob())
|
|
self.assertEqual(num_samples, len(samples))
|
|
np.testing.assert_array_equal(input_array, samples[:len(input_array)])
|
|
np.testing.assert_almost_equal(
|
|
np.array([float(num_samples) / num_elements] * num_samples,
|
|
dtype=np.float32),
|
|
sampling_prob
|
|
)
|
|
|
|
def testUniformSamplingWithIncorrectSampleSize(self):
|
|
input_record = self.new_record(schema.Scalar(np.int32))
|
|
num_samples = 200
|
|
num_elements = 100
|
|
with self.assertRaises(AssertionError):
|
|
self.model.UniformSampling(input_record, num_samples, num_elements)
|
|
|
|
def testGatherRecord(self):
|
|
indices = np.array([1, 3, 4], dtype=np.int32)
|
|
dense = np.array(list(range(20)), dtype=np.float32).reshape(10, 2)
|
|
lengths = np.array(list(range(10)), dtype=np.int32)
|
|
items = np.array(list(range(lengths.sum())), dtype=np.int64)
|
|
items_lengths = np.array(list(range(lengths.sum())), dtype=np.int32)
|
|
items_items = np.array(list(range(items_lengths.sum())), dtype=np.int64)
|
|
record = self.new_record(schema.Struct(
|
|
('dense', schema.Scalar(np.float32)),
|
|
('sparse', schema.Struct(
|
|
('list', schema.List(np.int64)),
|
|
('list_of_list', schema.List(schema.List(np.int64))),
|
|
)),
|
|
('empty_struct', schema.Struct())
|
|
))
|
|
indices_record = self.new_record(schema.Scalar(np.int32))
|
|
input_record = schema.Struct(
|
|
('indices', indices_record),
|
|
('record', record),
|
|
)
|
|
schema.FeedRecord(
|
|
input_record,
|
|
[indices, dense, lengths, items, lengths, items_lengths,
|
|
items_items])
|
|
gathered_record = self.model.GatherRecord(input_record)
|
|
self.assertTrue(schema.equal_schemas(gathered_record, record))
|
|
|
|
self.run_train_net_forward_only()
|
|
gathered_dense = workspace.FetchBlob(gathered_record.dense())
|
|
np.testing.assert_array_equal(
|
|
np.concatenate([dense[i:i + 1] for i in indices]), gathered_dense)
|
|
gathered_lengths = workspace.FetchBlob(
|
|
gathered_record.sparse.list.lengths())
|
|
np.testing.assert_array_equal(
|
|
np.concatenate([lengths[i:i + 1] for i in indices]),
|
|
gathered_lengths)
|
|
gathered_items = workspace.FetchBlob(
|
|
gathered_record.sparse.list.items())
|
|
offsets = lengths.cumsum() - lengths
|
|
np.testing.assert_array_equal(
|
|
np.concatenate([
|
|
items[offsets[i]: offsets[i] + lengths[i]]
|
|
for i in indices
|
|
]), gathered_items)
|
|
|
|
gathered_items_lengths = workspace.FetchBlob(
|
|
gathered_record.sparse.list_of_list.items.lengths())
|
|
np.testing.assert_array_equal(
|
|
np.concatenate([
|
|
items_lengths[offsets[i]: offsets[i] + lengths[i]]
|
|
for i in indices
|
|
]),
|
|
gathered_items_lengths
|
|
)
|
|
|
|
nested_offsets = []
|
|
nested_lengths = []
|
|
nested_offset = 0
|
|
j = 0
|
|
for l in lengths:
|
|
nested_offsets.append(nested_offset)
|
|
nested_length = 0
|
|
for _i in range(l):
|
|
nested_offset += items_lengths[j]
|
|
nested_length += items_lengths[j]
|
|
j += 1
|
|
nested_lengths.append(nested_length)
|
|
|
|
gathered_items_items = workspace.FetchBlob(
|
|
gathered_record.sparse.list_of_list.items.items())
|
|
np.testing.assert_array_equal(
|
|
np.concatenate([
|
|
items_items[nested_offsets[i]:
|
|
nested_offsets[i] + nested_lengths[i]]
|
|
for i in indices
|
|
]),
|
|
gathered_items_items
|
|
)
|
|
|
|
def testMapToRange(self):
|
|
input_record = self.new_record(schema.Scalar(np.int32))
|
|
indices_blob = self.model.MapToRange(input_record,
|
|
max_index=100).indices
|
|
self.model.output_schema = schema.Struct()
|
|
|
|
train_init_net, train_net = self.get_training_nets()
|
|
|
|
schema.FeedRecord(
|
|
input_record,
|
|
[np.array([10, 3, 20, 99, 15, 11, 3, 11], dtype=np.int32)]
|
|
)
|
|
workspace.RunNetOnce(train_init_net)
|
|
workspace.RunNetOnce(train_net)
|
|
indices = workspace.FetchBlob(indices_blob())
|
|
np.testing.assert_array_equal(
|
|
np.array([1, 2, 3, 4, 5, 6, 2, 6], dtype=np.int32),
|
|
indices
|
|
)
|
|
|
|
schema.FeedRecord(
|
|
input_record,
|
|
[np.array([10, 3, 23, 35, 60, 15, 10, 15], dtype=np.int32)]
|
|
)
|
|
workspace.RunNetOnce(train_net)
|
|
indices = workspace.FetchBlob(indices_blob())
|
|
np.testing.assert_array_equal(
|
|
np.array([1, 2, 7, 8, 9, 5, 1, 5], dtype=np.int32),
|
|
indices
|
|
)
|
|
|
|
eval_net = self.get_eval_net()
|
|
|
|
schema.FeedRecord(
|
|
input_record,
|
|
[np.array([10, 3, 23, 35, 60, 15, 200], dtype=np.int32)]
|
|
)
|
|
workspace.RunNetOnce(eval_net)
|
|
indices = workspace.FetchBlob(indices_blob())
|
|
np.testing.assert_array_equal(
|
|
np.array([1, 2, 7, 8, 9, 5, 0], dtype=np.int32),
|
|
indices
|
|
)
|
|
|
|
schema.FeedRecord(
|
|
input_record,
|
|
[np.array([10, 3, 23, 15, 101, 115], dtype=np.int32)]
|
|
)
|
|
workspace.RunNetOnce(eval_net)
|
|
indices = workspace.FetchBlob(indices_blob())
|
|
np.testing.assert_array_equal(
|
|
np.array([1, 2, 7, 5, 0, 0], dtype=np.int32),
|
|
indices
|
|
)
|
|
|
|
predict_net = self.get_predict_net()
|
|
|
|
schema.FeedRecord(
|
|
input_record,
|
|
[np.array([3, 3, 20, 23, 151, 35, 60, 15, 200], dtype=np.int32)]
|
|
)
|
|
workspace.RunNetOnce(predict_net)
|
|
indices = workspace.FetchBlob(indices_blob())
|
|
np.testing.assert_array_equal(
|
|
np.array([2, 2, 3, 7, 0, 8, 9, 5, 0], dtype=np.int32),
|
|
indices
|
|
)
|
|
|
|
def testSelectRecordByContext(self):
|
|
float_features = self.model.input_feature_schema.float_features
|
|
|
|
float_array = np.array([1.0, 2.0], dtype=np.float32)
|
|
|
|
schema.FeedRecord(float_features, [float_array])
|
|
|
|
with Tags(Tags.EXCLUDE_FROM_PREDICTION):
|
|
log_float_features = self.model.Log(float_features, 1)
|
|
joined = self.model.SelectRecordByContext(
|
|
schema.Struct(
|
|
(InstantiationContext.PREDICTION, float_features),
|
|
(InstantiationContext.TRAINING, log_float_features),
|
|
# TODO: TRAIN_ONLY layers are also generated in eval
|
|
(InstantiationContext.EVAL, log_float_features),
|
|
)
|
|
)
|
|
|
|
# model.output_schema has to a struct
|
|
self.model.output_schema = schema.Struct((
|
|
'joined', joined
|
|
))
|
|
predict_net = layer_model_instantiator.generate_predict_net(self.model)
|
|
workspace.RunNetOnce(predict_net)
|
|
predict_output = schema.FetchRecord(predict_net.output_record())
|
|
npt.assert_array_equal(float_array,
|
|
predict_output['joined']())
|
|
eval_net = layer_model_instantiator.generate_eval_net(self.model)
|
|
workspace.RunNetOnce(eval_net)
|
|
eval_output = schema.FetchRecord(eval_net.output_record())
|
|
npt.assert_array_equal(np.log(float_array),
|
|
eval_output['joined']())
|
|
_, train_net = (
|
|
layer_model_instantiator.generate_training_nets_forward_only(
|
|
self.model
|
|
)
|
|
)
|
|
workspace.RunNetOnce(train_net)
|
|
train_output = schema.FetchRecord(train_net.output_record())
|
|
npt.assert_array_equal(np.log(float_array),
|
|
train_output['joined']())
|
|
|
|
def testFunctionalLayer(self):
|
|
def normalize(net, in_record, out_record):
|
|
mean = net.ReduceFrontMean(in_record(), 1)
|
|
net.Sub(
|
|
[in_record(), mean],
|
|
out_record(),
|
|
broadcast=1)
|
|
normalized = self.model.Functional(
|
|
self.model.input_feature_schema.float_features, 1,
|
|
normalize, name="normalizer")
|
|
|
|
# Attach metadata to one of the outputs and use it in FC
|
|
normalized.set_type((np.float32, 32))
|
|
self.model.output_schema = self.model.FC(normalized, 2)
|
|
|
|
predict_net = layer_model_instantiator.generate_predict_net(
|
|
self.model)
|
|
ops = predict_net.Proto().op
|
|
assert len(ops) == 3
|
|
assert ops[0].type == "ReduceFrontMean"
|
|
assert ops[1].type == "Sub"
|
|
assert ops[2].type == "FC"
|
|
assert len(ops[0].input) == 1
|
|
assert ops[0].input[0] ==\
|
|
self.model.input_feature_schema.float_features()
|
|
assert len(ops[1].output) == 1
|
|
assert ops[1].output[0] in ops[2].input
|
|
|
|
def testFunctionalLayerHelper(self):
|
|
mean = self.model.ReduceFrontMean(
|
|
self.model.input_feature_schema.float_features, 1)
|
|
normalized = self.model.Sub(
|
|
schema.Tuple(
|
|
self.model.input_feature_schema.float_features, mean),
|
|
1, broadcast=1)
|
|
# Attach metadata to one of the outputs and use it in FC
|
|
normalized.set_type((np.float32, (32,)))
|
|
self.model.output_schema = self.model.FC(normalized, 2)
|
|
|
|
predict_net = layer_model_instantiator.generate_predict_net(
|
|
self.model)
|
|
ops = predict_net.Proto().op
|
|
assert len(ops) == 3
|
|
assert ops[0].type == "ReduceFrontMean"
|
|
assert ops[1].type == "Sub"
|
|
assert ops[2].type == "FC"
|
|
assert len(ops[0].input) == 1
|
|
assert ops[0].input[0] ==\
|
|
self.model.input_feature_schema.float_features()
|
|
assert len(ops[1].output) == 1
|
|
assert ops[1].output[0] in ops[2].input
|
|
|
|
def testFunctionalLayerHelperAutoInference(self):
|
|
softsign = self.model.Softsign(
|
|
schema.Tuple(self.model.input_feature_schema.float_features),
|
|
1)
|
|
assert softsign.field_type().base == np.float32
|
|
assert softsign.field_type().shape == (32,)
|
|
self.model.output_schema = self.model.FC(softsign, 2)
|
|
|
|
predict_net = layer_model_instantiator.generate_predict_net(
|
|
self.model)
|
|
ops = predict_net.Proto().op
|
|
assert len(ops) == 2
|
|
assert ops[0].type == "Softsign"
|
|
assert ops[1].type == "FC"
|
|
assert len(ops[0].input) == 1
|
|
assert ops[0].input[0] ==\
|
|
self.model.input_feature_schema.float_features()
|
|
assert len(ops[0].output) == 1
|
|
assert ops[0].output[0] in ops[1].input
|
|
|
|
@unittest.skipIf(not workspace.has_gpu_support, "No gpu support.")
|
|
def testHalfToFloatTypeInference(self):
|
|
input = self.new_record(schema.Scalar((np.float32, (32,))))
|
|
|
|
output = self.model.FloatToHalf(input, 1)
|
|
assert output.field_type().base == np.float16
|
|
assert output.field_type().shape == (32, )
|
|
|
|
output = self.model.HalfToFloat(output, 1)
|
|
assert output.field_type().base == np.float32
|
|
assert output.field_type().shape == (32, )
|
|
|
|
def testFunctionalLayerHelperAutoInferenceScalar(self):
|
|
loss = self.model.AveragedLoss(self.model.input_feature_schema, 1)
|
|
self.assertEqual(1, len(loss.field_types()))
|
|
self.assertEqual(np.float32, loss.field_types()[0].base)
|
|
self.assertEqual(tuple(), loss.field_types()[0].shape)
|
|
|
|
def testFunctionalLayerInputCoercion(self):
|
|
one = self.model.global_constants['ONE']
|
|
two = self.model.Add([one, one], 1)
|
|
self.model.loss = two
|
|
self.run_train_net()
|
|
data = workspace.FetchBlob(two.field_blobs()[0])
|
|
np.testing.assert_array_equal([2.0], data)
|
|
|
|
def testFunctionalLayerWithOutputNames(self):
|
|
k = 3
|
|
topk = self.model.TopK(
|
|
self.model.input_feature_schema,
|
|
output_names_or_num=['values', 'indices'],
|
|
k=k,
|
|
)
|
|
self.assertEqual(2, len(topk.field_types()))
|
|
self.assertEqual(np.float32, topk.field_types()[0].base)
|
|
self.assertEqual((k,), topk.field_types()[0].shape)
|
|
self.assertEqual(np.int32, topk.field_types()[1].base)
|
|
self.assertEqual((k,), topk.field_types()[1].shape)
|
|
self.assertEqual(['TopK/values', 'TopK/indices'], topk.field_blobs())
|
|
|
|
def testFunctionalLayerSameOperatorOutputNames(self):
|
|
Con1 = self.model.ConstantFill([], 1, value=1)
|
|
Con2 = self.model.ConstantFill([], 1, value=2)
|
|
self.assertNotEqual(str(Con1), str(Con2))
|
|
|
|
def testFunctionalLayerWithOutputDtypes(self):
|
|
loss = self.model.AveragedLoss(
|
|
self.model.input_feature_schema,
|
|
1,
|
|
output_dtypes=(np.float32, (1,)),
|
|
)
|
|
self.assertEqual(1, len(loss.field_types()))
|
|
self.assertEqual(np.float32, loss.field_types()[0].base)
|
|
self.assertEqual((1,), loss.field_types()[0].shape)
|
|
|
|
def testPropagateRequestOnly(self):
|
|
# test case when output is request only
|
|
input_record = self.new_record(schema.Struct(
|
|
('input1', schema.Scalar((np.float32, (32, )))),
|
|
('input2', schema.Scalar((np.float32, (64, )))),
|
|
('input3', schema.Scalar((np.float32, (16, )))),
|
|
))
|
|
|
|
set_request_only(input_record)
|
|
concat_output = self.model.Concat(input_record)
|
|
self.assertEqual(is_request_only_scalar(concat_output), True)
|
|
|
|
# test case when output is not request only
|
|
input_record2 = self.new_record(schema.Struct(
|
|
('input4', schema.Scalar((np.float32, (100, ))))
|
|
)) + input_record
|
|
|
|
concat_output2 = self.model.Concat(input_record2)
|
|
self.assertEqual(is_request_only_scalar(concat_output2), False)
|
|
|
|
def testSetRequestOnly(self):
|
|
input_record = schema.Scalar(np.int64)
|
|
schema.attach_metadata_to_scalars(
|
|
input_record,
|
|
schema.Metadata(
|
|
categorical_limit=100000000,
|
|
expected_value=99,
|
|
feature_specs=schema.FeatureSpec(
|
|
feature_ids=[1, 100, 1001]
|
|
)
|
|
)
|
|
)
|
|
|
|
set_request_only(input_record)
|
|
self.assertEqual(input_record.metadata.categorical_limit, 100000000)
|
|
self.assertEqual(input_record.metadata.expected_value, 99)
|
|
self.assertEqual(
|
|
input_record.metadata.feature_specs.feature_ids,
|
|
[1, 100, 1001]
|
|
)
|
|
|
|
@given(
|
|
X=hu.arrays(dims=[5, 5]), # Shape of X is irrelevant
|
|
)
|
|
def testDropout(self, X):
|
|
input_record = self.new_record(schema.Scalar((np.float32, (1,))))
|
|
schema.FeedRecord(input_record, [X])
|
|
d_output = self.model.Dropout(input_record)
|
|
self.assertEqual(schema.Scalar((np.float32, (1,))), d_output)
|
|
self.model.output_schema = schema.Struct()
|
|
|
|
train_init_net, train_net = self.get_training_nets()
|
|
|
|
input_blob = input_record.field_blobs()[0]
|
|
output_blob = d_output.field_blobs()[0]
|
|
|
|
train_d_spec = OpSpec(
|
|
"Dropout",
|
|
[input_blob],
|
|
[output_blob, None],
|
|
{'is_test': 0, 'ratio': 0.5}
|
|
)
|
|
|
|
test_d_spec = OpSpec(
|
|
"Dropout",
|
|
[input_blob],
|
|
[output_blob, None],
|
|
{'is_test': 1, 'ratio': 0.5}
|
|
)
|
|
|
|
self.assertNetContainOps(
|
|
train_net,
|
|
[train_d_spec]
|
|
)
|
|
|
|
eval_net = self.get_eval_net()
|
|
|
|
self.assertNetContainOps(
|
|
eval_net,
|
|
[test_d_spec]
|
|
)
|
|
|
|
predict_net = self.get_predict_net()
|
|
|
|
self.assertNetContainOps(
|
|
predict_net,
|
|
[test_d_spec]
|
|
)
|
|
|
|
workspace.RunNetOnce(train_init_net)
|
|
workspace.RunNetOnce(train_net)
|
|
|
|
schema.FeedRecord(input_record, [X])
|
|
workspace.RunNetOnce(eval_net)
|
|
|
|
schema.FeedRecord(input_record, [X])
|
|
workspace.RunNetOnce(predict_net)
|
|
|
|
@given(
|
|
num_inputs=st.integers(1, 3),
|
|
batch_size=st.integers(5, 10)
|
|
)
|
|
def testMergeIdListsLayer(self, num_inputs, batch_size):
|
|
inputs = []
|
|
for _ in range(num_inputs):
|
|
lengths = np.random.randint(5, size=batch_size).astype(np.int32)
|
|
size = lengths.sum()
|
|
values = np.random.randint(1, 10, size=size).astype(np.int64)
|
|
inputs.append(lengths)
|
|
inputs.append(values)
|
|
input_schema = schema.Tuple(
|
|
*[schema.List(
|
|
schema.Scalar(dtype=np.int64, metadata=schema.Metadata(
|
|
categorical_limit=20
|
|
))) for _ in range(num_inputs)]
|
|
)
|
|
|
|
input_record = schema.NewRecord(self.model.net, input_schema)
|
|
schema.FeedRecord(input_record, inputs)
|
|
output_schema = self.model.MergeIdLists(input_record)
|
|
assert schema.equal_schemas(
|
|
output_schema, IdList,
|
|
check_field_names=False)
|
|
|
|
@given(
|
|
batch_size=st.integers(min_value=2, max_value=10),
|
|
input_dims=st.integers(min_value=5, max_value=10),
|
|
output_dims=st.integers(min_value=5, max_value=10),
|
|
bandwidth=st.floats(min_value=0.1, max_value=5),
|
|
)
|
|
def testRandomFourierFeatures(self, batch_size, input_dims, output_dims, bandwidth):
|
|
|
|
def _rff_hypothesis_test(rff_output, X, W, b, scale):
|
|
"""
|
|
Runs hypothesis test for Semi Random Features layer.
|
|
|
|
Inputs:
|
|
rff_output -- output of net after running random fourier features layer
|
|
X -- input data
|
|
W -- weight parameter from train_init_net
|
|
b -- bias parameter from train_init_net
|
|
scale -- value by which to scale the output vector
|
|
"""
|
|
output = workspace.FetchBlob(rff_output)
|
|
output_ref = scale * np.cos(np.dot(X, np.transpose(W)) + b)
|
|
npt.assert_allclose(output, output_ref, rtol=1e-3, atol=1e-3)
|
|
|
|
X = np.random.random((batch_size, input_dims)).astype(np.float32)
|
|
scale = np.sqrt(2.0 / output_dims)
|
|
input_record = self.new_record(schema.Scalar((np.float32, (input_dims,))))
|
|
schema.FeedRecord(input_record, [X])
|
|
input_blob = input_record.field_blobs()[0]
|
|
rff_output = self.model.RandomFourierFeatures(input_record,
|
|
output_dims,
|
|
bandwidth)
|
|
self.model.output_schema = schema.Struct()
|
|
|
|
self.assertEqual(
|
|
schema.Scalar((np.float32, (output_dims, ))),
|
|
rff_output
|
|
)
|
|
|
|
train_init_net, train_net = self.get_training_nets()
|
|
|
|
# Init net assertions
|
|
init_ops_list = [
|
|
OpSpec("GaussianFill", None, None),
|
|
OpSpec("UniformFill", None, None),
|
|
]
|
|
init_ops = self._test_net(train_init_net, init_ops_list)
|
|
W = workspace.FetchBlob(self.model.layers[0].w)
|
|
b = workspace.FetchBlob(self.model.layers[0].b)
|
|
|
|
# Operation specifications
|
|
fc_spec = OpSpec("FC", [input_blob, init_ops[0].output[0],
|
|
init_ops[1].output[0]], None)
|
|
cosine_spec = OpSpec("Cos", None, None)
|
|
scale_spec = OpSpec("Scale", None, rff_output.field_blobs(),
|
|
{'scale': scale})
|
|
ops_list = [
|
|
fc_spec,
|
|
cosine_spec,
|
|
scale_spec
|
|
]
|
|
|
|
# Train net assertions
|
|
self._test_net(train_net, ops_list)
|
|
_rff_hypothesis_test(rff_output(), X, W, b, scale)
|
|
|
|
# Eval net assertions
|
|
eval_net = self.get_eval_net()
|
|
self._test_net(eval_net, ops_list)
|
|
_rff_hypothesis_test(rff_output(), X, W, b, scale)
|
|
|
|
# Predict net assertions
|
|
predict_net = self.get_predict_net()
|
|
self._test_net(predict_net, ops_list)
|
|
_rff_hypothesis_test(rff_output(), X, W, b, scale)
|
|
|
|
@given(
|
|
batch_size=st.integers(min_value=2, max_value=10),
|
|
input_dims=st.integers(min_value=5, max_value=10),
|
|
output_dims=st.integers(min_value=5, max_value=10),
|
|
s=st.integers(min_value=0, max_value=3),
|
|
scale=st.floats(min_value=0.1, max_value=5),
|
|
set_weight_as_global_constant=st.booleans()
|
|
)
|
|
def testArcCosineFeatureMap(self, batch_size, input_dims, output_dims, s, scale,
|
|
set_weight_as_global_constant):
|
|
|
|
def _arc_cosine_hypothesis_test(ac_output, X, W, b, s):
|
|
"""
|
|
Runs hypothesis test for Arc Cosine layer.
|
|
|
|
Inputs:
|
|
ac_output -- output of net after running arc cosine layer
|
|
X -- input data
|
|
W -- weight parameter from train_init_net
|
|
b -- bias parameter from train_init_net
|
|
s -- degree parameter
|
|
"""
|
|
# Get output from net
|
|
net_output = workspace.FetchBlob(ac_output)
|
|
|
|
# Computing output directly
|
|
x_rand = np.matmul(X, np.transpose(W)) + b
|
|
x_pow = np.power(x_rand, s)
|
|
if s > 0:
|
|
h_rand_features = np.piecewise(x_rand,
|
|
[x_rand <= 0, x_rand > 0],
|
|
[0, 1])
|
|
else:
|
|
h_rand_features = np.piecewise(x_rand,
|
|
[x_rand <= 0, x_rand > 0],
|
|
[0, lambda x: x / (1 + x)])
|
|
output_ref = np.multiply(x_pow, h_rand_features)
|
|
|
|
# Comparing net output and computed output
|
|
npt.assert_allclose(net_output, output_ref, rtol=1e-3, atol=1e-3)
|
|
|
|
X = np.random.normal(size=(batch_size, input_dims)).astype(np.float32)
|
|
input_record = self.new_record(schema.Scalar((np.float32, (input_dims,))))
|
|
schema.FeedRecord(input_record, [X])
|
|
input_blob = input_record.field_blobs()[0]
|
|
|
|
ac_output = self.model.ArcCosineFeatureMap(
|
|
input_record,
|
|
output_dims,
|
|
s=s,
|
|
scale=scale,
|
|
set_weight_as_global_constant=set_weight_as_global_constant
|
|
)
|
|
self.model.output_schema = schema.Struct()
|
|
self.assertEqual(
|
|
schema.Scalar((np.float32, (output_dims, ))),
|
|
ac_output
|
|
)
|
|
|
|
train_init_net, train_net = self.get_training_nets()
|
|
|
|
# Run create_init_net to initialize the global constants, and W and b
|
|
workspace.RunNetOnce(train_init_net)
|
|
workspace.RunNetOnce(self.model.create_init_net(name='init_net'))
|
|
|
|
if set_weight_as_global_constant:
|
|
W = workspace.FetchBlob(
|
|
self.model.global_constants['arc_cosine_feature_map_fixed_rand_W']
|
|
)
|
|
b = workspace.FetchBlob(
|
|
self.model.global_constants['arc_cosine_feature_map_fixed_rand_b']
|
|
)
|
|
else:
|
|
W = workspace.FetchBlob(self.model.layers[0].random_w)
|
|
b = workspace.FetchBlob(self.model.layers[0].random_b)
|
|
|
|
# Operation specifications
|
|
fc_spec = OpSpec("FC", [input_blob, None, None], None)
|
|
softsign_spec = OpSpec("Softsign", None, None)
|
|
relu_spec = OpSpec("Relu", None, None)
|
|
relu_spec_output = OpSpec("Relu", None, ac_output.field_blobs())
|
|
pow_spec = OpSpec("Pow", None, None, {'exponent': float(s - 1)})
|
|
mul_spec = OpSpec("Mul", None, ac_output.field_blobs())
|
|
|
|
if s == 0:
|
|
ops_list = [
|
|
fc_spec,
|
|
softsign_spec,
|
|
relu_spec_output,
|
|
]
|
|
elif s == 1:
|
|
ops_list = [
|
|
fc_spec,
|
|
relu_spec_output,
|
|
]
|
|
else:
|
|
ops_list = [
|
|
fc_spec,
|
|
relu_spec,
|
|
pow_spec,
|
|
mul_spec,
|
|
]
|
|
|
|
# Train net assertions
|
|
self._test_net(train_net, ops_list)
|
|
_arc_cosine_hypothesis_test(ac_output(), X, W, b, s)
|
|
|
|
# Eval net assertions
|
|
eval_net = self.get_eval_net()
|
|
self._test_net(eval_net, ops_list)
|
|
_arc_cosine_hypothesis_test(ac_output(), X, W, b, s)
|
|
|
|
# Predict net assertions
|
|
predict_net = self.get_predict_net()
|
|
self._test_net(predict_net, ops_list)
|
|
_arc_cosine_hypothesis_test(ac_output(), X, W, b, s)
|
|
|
|
@given(
|
|
batch_size=st.integers(min_value=2, max_value=10),
|
|
input_dims=st.integers(min_value=5, max_value=10),
|
|
output_dims=st.integers(min_value=5, max_value=10),
|
|
s=st.integers(min_value=0, max_value=3),
|
|
scale=st.floats(min_value=0.1, max_value=5),
|
|
set_weight_as_global_constant=st.booleans(),
|
|
use_struct_input=st.booleans(),
|
|
)
|
|
def testSemiRandomFeatures(self, batch_size, input_dims, output_dims, s, scale,
|
|
set_weight_as_global_constant, use_struct_input):
|
|
|
|
def _semi_random_hypothesis_test(srf_output, X_full, X_random, rand_w,
|
|
rand_b, s):
|
|
"""
|
|
Runs hypothesis test for Semi Random Features layer.
|
|
|
|
Inputs:
|
|
srf_output -- output of net after running semi random features layer
|
|
X_full -- full input data
|
|
X_random -- random-output input data
|
|
rand_w -- random-initialized weight parameter from train_init_net
|
|
rand_b -- random-initialized bias parameter from train_init_net
|
|
s -- degree parameter
|
|
|
|
"""
|
|
# Get output from net
|
|
net_output = workspace.FetchBlob(srf_output)
|
|
|
|
# Fetch learned parameter blobs
|
|
learned_w = workspace.FetchBlob(self.model.layers[0].learned_w)
|
|
learned_b = workspace.FetchBlob(self.model.layers[0].learned_b)
|
|
|
|
# Computing output directly
|
|
x_rand = np.matmul(X_random, np.transpose(rand_w)) + rand_b
|
|
x_learn = np.matmul(X_full, np.transpose(learned_w)) + learned_b
|
|
x_pow = np.power(x_rand, s)
|
|
if s > 0:
|
|
h_rand_features = np.piecewise(x_rand,
|
|
[x_rand <= 0, x_rand > 0],
|
|
[0, 1])
|
|
else:
|
|
h_rand_features = np.piecewise(x_rand,
|
|
[x_rand <= 0, x_rand > 0],
|
|
[0, lambda x: x / (1 + x)])
|
|
output_ref = np.multiply(np.multiply(x_pow, h_rand_features), x_learn)
|
|
|
|
# Comparing net output and computed output
|
|
npt.assert_allclose(net_output, output_ref, rtol=1e-3, atol=1e-3)
|
|
|
|
X_full = np.random.normal(size=(batch_size, input_dims)).astype(np.float32)
|
|
if use_struct_input:
|
|
X_random = np.random.normal(size=(batch_size, input_dims)).\
|
|
astype(np.float32)
|
|
input_data = [X_full, X_random]
|
|
input_record = self.new_record(schema.Struct(
|
|
('full', schema.Scalar(
|
|
(np.float32, (input_dims,))
|
|
)),
|
|
('random', schema.Scalar(
|
|
(np.float32, (input_dims,))
|
|
))
|
|
))
|
|
else:
|
|
X_random = X_full
|
|
input_data = [X_full]
|
|
input_record = self.new_record(schema.Scalar(
|
|
(np.float32, (input_dims,))
|
|
))
|
|
|
|
schema.FeedRecord(input_record, input_data)
|
|
srf_output = self.model.SemiRandomFeatures(
|
|
input_record,
|
|
output_dims,
|
|
s=s,
|
|
scale_random=scale,
|
|
scale_learned=scale,
|
|
set_weight_as_global_constant=set_weight_as_global_constant
|
|
)
|
|
|
|
self.model.output_schema = schema.Struct()
|
|
|
|
self.assertEqual(
|
|
schema.Struct(
|
|
('full', schema.Scalar(
|
|
(np.float32, (output_dims,))
|
|
)),
|
|
('random', schema.Scalar(
|
|
(np.float32, (output_dims,))
|
|
))
|
|
),
|
|
srf_output
|
|
)
|
|
|
|
init_ops_list = [
|
|
OpSpec("GaussianFill", None, None),
|
|
OpSpec("UniformFill", None, None),
|
|
OpSpec("GaussianFill", None, None),
|
|
OpSpec("UniformFill", None, None),
|
|
]
|
|
train_init_net, train_net = self.get_training_nets()
|
|
|
|
# Need to run to initialize the global constants for layer
|
|
workspace.RunNetOnce(self.model.create_init_net(name='init_net'))
|
|
|
|
if set_weight_as_global_constant:
|
|
# If weight params are global constants, they won't be in train_init_net
|
|
init_ops = self._test_net(train_init_net, init_ops_list[:2])
|
|
rand_w = workspace.FetchBlob(
|
|
self.model.global_constants['semi_random_features_fixed_rand_W']
|
|
)
|
|
rand_b = workspace.FetchBlob(
|
|
self.model.global_constants['semi_random_features_fixed_rand_b']
|
|
)
|
|
|
|
# Operation specifications
|
|
fc_random_spec = OpSpec("FC", [None, None, None], None)
|
|
fc_learned_spec = OpSpec("FC", [None, init_ops[0].output[0],
|
|
init_ops[1].output[0]], None)
|
|
else:
|
|
init_ops = self._test_net(train_init_net, init_ops_list)
|
|
rand_w = workspace.FetchBlob(self.model.layers[0].random_w)
|
|
rand_b = workspace.FetchBlob(self.model.layers[0].random_b)
|
|
|
|
# Operation specifications
|
|
fc_random_spec = OpSpec("FC", [None, init_ops[0].output[0],
|
|
init_ops[1].output[0]], None)
|
|
fc_learned_spec = OpSpec("FC", [None, init_ops[2].output[0],
|
|
init_ops[3].output[0]], None)
|
|
|
|
softsign_spec = OpSpec("Softsign", None, None)
|
|
relu_spec = OpSpec("Relu", None, None)
|
|
relu_output_spec = OpSpec("Relu", None, srf_output.random.field_blobs())
|
|
pow_spec = OpSpec("Pow", None, None, {'exponent': float(s - 1)})
|
|
mul_interim_spec = OpSpec("Mul", None, srf_output.random.field_blobs())
|
|
mul_spec = OpSpec("Mul", None, srf_output.full.field_blobs())
|
|
|
|
if s == 0:
|
|
ops_list = [
|
|
fc_learned_spec,
|
|
fc_random_spec,
|
|
softsign_spec,
|
|
relu_output_spec,
|
|
mul_spec,
|
|
]
|
|
elif s == 1:
|
|
ops_list = [
|
|
fc_learned_spec,
|
|
fc_random_spec,
|
|
relu_output_spec,
|
|
mul_spec,
|
|
]
|
|
else:
|
|
ops_list = [
|
|
fc_learned_spec,
|
|
fc_random_spec,
|
|
relu_spec,
|
|
pow_spec,
|
|
mul_interim_spec,
|
|
mul_spec,
|
|
]
|
|
|
|
# Train net assertions
|
|
self._test_net(train_net, ops_list)
|
|
_semi_random_hypothesis_test(srf_output.full(), X_full, X_random,
|
|
rand_w, rand_b, s)
|
|
|
|
# Eval net assertions
|
|
eval_net = self.get_eval_net()
|
|
self._test_net(eval_net, ops_list)
|
|
_semi_random_hypothesis_test(srf_output.full(), X_full, X_random,
|
|
rand_w, rand_b, s)
|
|
|
|
# Predict net assertions
|
|
predict_net = self.get_predict_net()
|
|
self._test_net(predict_net, ops_list)
|
|
_semi_random_hypothesis_test(srf_output.full(), X_full, X_random,
|
|
rand_w, rand_b, s)
|
|
|
|
def testConv(self):
|
|
batch_size = 50
|
|
H = 1
|
|
W = 10
|
|
C = 50
|
|
output_dims = 32
|
|
kernel_h = 1
|
|
kernel_w = 3
|
|
stride_h = 1
|
|
stride_w = 1
|
|
pad_t = 0
|
|
pad_b = 0
|
|
pad_r = None
|
|
pad_l = None
|
|
|
|
input_record = self.new_record(schema.Scalar((np.float32, (H, W, C))))
|
|
X = np.random.random((batch_size, H, W, C)).astype(np.float32)
|
|
schema.FeedRecord(input_record, [X])
|
|
conv = self.model.Conv(
|
|
input_record,
|
|
output_dims,
|
|
kernel_h=kernel_h,
|
|
kernel_w=kernel_w,
|
|
stride_h=stride_h,
|
|
stride_w=stride_w,
|
|
pad_t=pad_t,
|
|
pad_b=pad_b,
|
|
pad_r=pad_r,
|
|
pad_l=pad_l,
|
|
order='NHWC'
|
|
)
|
|
|
|
self.assertEqual(
|
|
schema.Scalar((np.float32, (output_dims,))),
|
|
conv
|
|
)
|
|
|
|
self.run_train_net_forward_only()
|
|
output_record = schema.FetchRecord(conv)
|
|
# check the number of output channels is the same as input in this example
|
|
assert output_record.field_types()[0].shape == (H, W, output_dims)
|
|
assert output_record().shape == (batch_size, H, W, output_dims)
|
|
|
|
train_init_net, train_net = self.get_training_nets()
|
|
# Init net assertions
|
|
init_ops = self.assertNetContainOps(
|
|
train_init_net,
|
|
[
|
|
OpSpec("XavierFill", None, None),
|
|
OpSpec("ConstantFill", None, None),
|
|
]
|
|
)
|
|
conv_spec = OpSpec(
|
|
"Conv",
|
|
[
|
|
input_record.field_blobs()[0],
|
|
init_ops[0].output[0],
|
|
init_ops[1].output[0],
|
|
],
|
|
conv.field_blobs()
|
|
)
|
|
|
|
# Train net assertions
|
|
self.assertNetContainOps(train_net, [conv_spec])
|
|
|
|
# Predict net assertions
|
|
predict_net = self.get_predict_net()
|
|
self.assertNetContainOps(predict_net, [conv_spec])
|
|
|
|
# Eval net assertions
|
|
eval_net = self.get_eval_net()
|
|
self.assertNetContainOps(eval_net, [conv_spec])
|