mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-06 12:20:52 +01:00
Embarrassingly move the pow implementations around [ATen/native/cuda/PowKernel.cu#L21-L66](849b08f14b/aten/src/ATen/native/cuda/PowKernel.cu (L21-L66)) to a new header file and let FusedAdam use them to tame MSVC, hopefully.
cc @ngimel @ptrblck
Pull Request resolved: https://github.com/pytorch/pytorch/pull/85739
Approved by: https://github.com/ngimel
176 lines
6.7 KiB
Python
176 lines
6.7 KiB
Python
from typing import List, Dict, Optional, Tuple
|
|
import torch
|
|
import torch.optim._functional as F
|
|
|
|
from torch import Tensor
|
|
|
|
__all__ : List[str] = []
|
|
|
|
# Define a TorchScript compatible Functional Adam Optimizer
|
|
# where we use these optimizer in a functional way.
|
|
# Instead of using the `param.grad` when updating parameters,
|
|
# we explicitly allow the distributed optimizer pass gradients to
|
|
# the `step` function. In this way, we could separate the gradients
|
|
# and parameters and allow multithreaded trainer to update the
|
|
# parameters without data traces on accumulating to the same .grad.
|
|
# NOTE: This should be only used by distributed optimizer internals
|
|
# and not meant to expose to the user.
|
|
@torch.jit.script
|
|
class _FunctionalAdam(object):
|
|
def __init__(
|
|
self,
|
|
params: List[Tensor],
|
|
lr: float = 1e-3,
|
|
betas: Tuple[float, float] = (0.9, 0.999),
|
|
eps: float = 1e-8,
|
|
weight_decay: float = 0.0,
|
|
amsgrad: bool = False,
|
|
maximize: bool = False,
|
|
foreach: bool = False,
|
|
fused: bool = False,
|
|
_allow_empty_param_list: bool = False,
|
|
):
|
|
if not 0.0 <= lr:
|
|
raise ValueError("Invalid learning rate: {}".format(lr))
|
|
if not 0.0 <= eps:
|
|
raise ValueError("Invalid epsilon value: {}".format(eps))
|
|
if not 0.0 <= betas[0] < 1.0:
|
|
raise ValueError("Invalid beta parameter at index 0: {}".format(betas[0]))
|
|
if not 0.0 <= betas[1] < 1.0:
|
|
raise ValueError("Invalid beta parameter at index 1: {}".format(betas[1]))
|
|
if not 0.0 <= weight_decay:
|
|
raise ValueError("Invalid weight_decay value: {}".format(weight_decay))
|
|
|
|
self.defaults = {
|
|
"lr": lr,
|
|
"eps": eps,
|
|
"beta1": betas[0],
|
|
"beta2": betas[1],
|
|
"weight_decay": weight_decay,
|
|
}
|
|
self.amsgrad = amsgrad
|
|
self.maximize = maximize
|
|
self.foreach = foreach
|
|
self.fused = fused
|
|
self.state = torch.jit.annotate(Dict[torch.Tensor, Dict[str, torch.Tensor]], {})
|
|
|
|
if len(params) == 0 and not _allow_empty_param_list:
|
|
raise ValueError("optimizer got an empty parameter list")
|
|
|
|
# NOTE: we only have one param_group and don't allow user to add additional
|
|
# param group as it's not a common use case.
|
|
self.param_group = {"params": params}
|
|
|
|
def step_param(self, param: Tensor, grad: Optional[Tensor]):
|
|
"""
|
|
Similar to step, but operates on a single parameter and optionally a
|
|
gradient tensor.
|
|
"""
|
|
params = [param]
|
|
params_with_grad = []
|
|
grads = []
|
|
exp_avgs = []
|
|
exp_avg_sqs = []
|
|
max_exp_avg_sqs = []
|
|
state_steps: List[Tensor] = []
|
|
if grad is not None:
|
|
params_with_grad.append(param)
|
|
grads.append(grad)
|
|
if param not in self.state:
|
|
self.state[param] = {}
|
|
state = self.state[param]
|
|
state['step'] = torch.tensor(0.0)
|
|
state['exp_avg'] = torch.zeros_like(param, memory_format=torch.preserve_format)
|
|
state['exp_avg_sq'] = torch.zeros_like(param, memory_format=torch.preserve_format)
|
|
if self.amsgrad:
|
|
state['max_exp_avg_sq'] = torch.zeros_like(param, memory_format=torch.preserve_format)
|
|
|
|
state = self.state[param]
|
|
exp_avgs.append(state['exp_avg'])
|
|
exp_avg_sqs.append(state['exp_avg_sq'])
|
|
|
|
if self.amsgrad:
|
|
max_exp_avg_sqs.append(state['max_exp_avg_sq'])
|
|
|
|
state_steps.append(state['step'])
|
|
with torch.no_grad():
|
|
F.adam(params_with_grad,
|
|
grads,
|
|
exp_avgs,
|
|
exp_avg_sqs,
|
|
max_exp_avg_sqs,
|
|
state_steps,
|
|
amsgrad=self.amsgrad,
|
|
maximize=self.maximize,
|
|
beta1=self.defaults['beta1'],
|
|
beta2=self.defaults['beta2'],
|
|
lr=self.defaults['lr'],
|
|
weight_decay=self.defaults['weight_decay'],
|
|
eps=self.defaults['eps'],
|
|
foreach=self.foreach,
|
|
fused=self.fused,
|
|
grad_scale=None,
|
|
found_inf=None)
|
|
|
|
def step(self, gradients: List[Optional[Tensor]]):
|
|
params = self.param_group['params']
|
|
params_with_grad = []
|
|
grads = []
|
|
exp_avgs = []
|
|
exp_avg_sqs = []
|
|
max_exp_avg_sqs = []
|
|
state_steps: List[Tensor] = []
|
|
|
|
if len(params) != len(gradients):
|
|
raise ValueError(
|
|
"the gradients passed in does not equal to the size of the parameters!"
|
|
+ f"Params length: {len(params)}. "
|
|
+ f"Gradients length: {len(gradients)}"
|
|
)
|
|
|
|
for param, gradient in zip(self.param_group['params'], gradients):
|
|
if gradient is not None:
|
|
params_with_grad.append(param)
|
|
grads.append(gradient)
|
|
# Lazy state initialization
|
|
if param not in self.state:
|
|
self.state[param] = {}
|
|
state = self.state[param]
|
|
state['step'] = torch.tensor(0.0)
|
|
# Exponential moving average of gradient values
|
|
state['exp_avg'] = torch.zeros_like(param, memory_format=torch.preserve_format)
|
|
# Exponential moving average of squared gradient values
|
|
state['exp_avg_sq'] = torch.zeros_like(param, memory_format=torch.preserve_format)
|
|
if self.amsgrad:
|
|
# Maintains max of all exp. moving avg. of sq. grad. values
|
|
state['max_exp_avg_sq'] = torch.zeros_like(param, memory_format=torch.preserve_format)
|
|
|
|
state = self.state[param]
|
|
|
|
exp_avgs.append(state['exp_avg'])
|
|
exp_avg_sqs.append(state['exp_avg_sq'])
|
|
|
|
if self.amsgrad:
|
|
max_exp_avg_sqs.append(state['max_exp_avg_sq'])
|
|
|
|
state_steps.append(state['step'])
|
|
|
|
with torch.no_grad():
|
|
F.adam(params_with_grad,
|
|
grads,
|
|
exp_avgs,
|
|
exp_avg_sqs,
|
|
max_exp_avg_sqs,
|
|
state_steps,
|
|
amsgrad=self.amsgrad,
|
|
maximize=self.maximize,
|
|
beta1=self.defaults['beta1'],
|
|
beta2=self.defaults['beta2'],
|
|
lr=self.defaults['lr'],
|
|
weight_decay=self.defaults['weight_decay'],
|
|
eps=self.defaults['eps'],
|
|
foreach=self.foreach,
|
|
fused=self.fused,
|
|
grad_scale=None,
|
|
found_inf=None)
|