mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-07 12:21:27 +01:00
Pull Request resolved: https://github.com/pytorch/pytorch/pull/105429 Approved by: https://github.com/malfet
74 lines
3.0 KiB
Python
74 lines
3.0 KiB
Python
from collections import namedtuple
|
|
from functools import partial
|
|
import torch
|
|
import torchvision.models as cnn
|
|
|
|
from .factory import (dropoutlstm_creator, imagenet_cnn_creator,
|
|
layernorm_pytorch_lstm_creator, lnlstm_creator,
|
|
lstm_creator, lstm_multilayer_creator,
|
|
lstm_premul_bias_creator, lstm_premul_creator,
|
|
lstm_simple_creator, pytorch_lstm_creator,
|
|
varlen_lstm_creator, varlen_pytorch_lstm_creator)
|
|
|
|
|
|
class DisableCuDNN:
|
|
def __enter__(self):
|
|
self.saved = torch.backends.cudnn.enabled
|
|
torch.backends.cudnn.enabled = False
|
|
|
|
def __exit__(self, *args, **kwargs):
|
|
torch.backends.cudnn.enabled = self.saved
|
|
|
|
|
|
class DummyContext:
|
|
def __enter__(self):
|
|
pass
|
|
|
|
def __exit__(self, *args, **kwargs):
|
|
pass
|
|
|
|
|
|
class AssertNoJIT:
|
|
def __enter__(self):
|
|
import os
|
|
enabled = os.environ.get('PYTORCH_JIT', 1)
|
|
assert not enabled
|
|
|
|
def __exit__(self, *args, **kwargs):
|
|
pass
|
|
|
|
|
|
RNNRunner = namedtuple('RNNRunner', [
|
|
'name', 'creator', 'context',
|
|
])
|
|
|
|
|
|
def get_nn_runners(*names):
|
|
return [nn_runners[name] for name in names]
|
|
|
|
|
|
nn_runners = {
|
|
'cudnn': RNNRunner('cudnn', pytorch_lstm_creator, DummyContext),
|
|
'cudnn_dropout': RNNRunner('cudnn_dropout', partial(pytorch_lstm_creator, dropout=0.4), DummyContext),
|
|
'cudnn_layernorm': RNNRunner('cudnn_layernorm', layernorm_pytorch_lstm_creator, DummyContext),
|
|
'vl_cudnn': RNNRunner('vl_cudnn', varlen_pytorch_lstm_creator, DummyContext),
|
|
'vl_jit': RNNRunner('vl_jit', partial(varlen_lstm_creator, script=True), DummyContext),
|
|
'vl_py': RNNRunner('vl_py', varlen_lstm_creator, DummyContext),
|
|
'aten': RNNRunner('aten', pytorch_lstm_creator, DisableCuDNN),
|
|
'jit': RNNRunner('jit', lstm_creator, DummyContext),
|
|
'jit_premul': RNNRunner('jit_premul', lstm_premul_creator, DummyContext),
|
|
'jit_premul_bias': RNNRunner('jit_premul_bias', lstm_premul_bias_creator, DummyContext),
|
|
'jit_simple': RNNRunner('jit_simple', lstm_simple_creator, DummyContext),
|
|
'jit_multilayer': RNNRunner('jit_multilayer', lstm_multilayer_creator, DummyContext),
|
|
'jit_layernorm': RNNRunner('jit_layernorm', lnlstm_creator, DummyContext),
|
|
'jit_layernorm_decom': RNNRunner('jit_layernorm_decom',
|
|
partial(lnlstm_creator, decompose_layernorm=True),
|
|
DummyContext),
|
|
'jit_dropout': RNNRunner('jit_dropout', dropoutlstm_creator, DummyContext),
|
|
'py': RNNRunner('py', partial(lstm_creator, script=False), DummyContext),
|
|
'resnet18': RNNRunner('resnet18', imagenet_cnn_creator(cnn.resnet18, jit=False), DummyContext),
|
|
'resnet18_jit': RNNRunner('resnet18_jit', imagenet_cnn_creator(cnn.resnet18), DummyContext),
|
|
'resnet50': RNNRunner('resnet50', imagenet_cnn_creator(cnn.resnet50, jit=False), DummyContext),
|
|
'resnet50_jit': RNNRunner('resnet50_jit', imagenet_cnn_creator(cnn.resnet50), DummyContext),
|
|
}
|