pytorch/caffe2/python/operator_test/pooling_test.py
Yangqing Jia 5eb836880d Add unittest.main() lines to test scripts under python/operator_test
Summary:
Needed by oss.

This is done by running the following line:

  find . -name "*_test.py" -exec sed -i '$ a \\nif __name__ == "__main__":\n    import unittest\n    unittest.main()' {} \;

Reviewed By: ajtulloch

Differential Revision: D4223848

fbshipit-source-id: ef4696e9701d45962134841165c53e76a2e19233
2016-11-29 15:18:37 -08:00

121 lines
4.1 KiB
Python

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import numpy as np
from hypothesis import assume, given, settings
import hypothesis.strategies as st
import collections
from caffe2.python import core, workspace
import caffe2.python.hypothesis_test_util as hu
class TestPooling(hu.HypothesisTestCase):
# CUDNN does NOT support different padding values and we skip it
@given(stride_h=st.integers(1, 3),
stride_w=st.integers(1, 3),
pad_t=st.integers(0, 3),
pad_l=st.integers(0, 3),
pad_b=st.integers(0, 3),
pad_r=st.integers(0, 3),
kernel=st.integers(3, 5),
size=st.integers(7, 9),
input_channels=st.integers(1, 3),
batch_size=st.integers(1, 3),
order=st.sampled_from(["NCHW", "NHWC"]),
method=st.sampled_from(["MaxPool", "AveragePool", "LpPool"]),
**hu.gcs)
def test_pooling_separate_stride_pad(self, stride_h, stride_w,
pad_t, pad_l, pad_b,
pad_r, kernel, size,
input_channels,
batch_size, order,
method,
gc, dc):
assume(np.max([pad_t, pad_l, pad_b, pad_r]) < kernel)
op = core.CreateOperator(
method,
["X"],
["Y"],
stride_h=stride_h,
stride_w=stride_w,
pad_t=pad_t,
pad_l=pad_l,
pad_b=pad_b,
pad_r=pad_r,
kernel=kernel,
order=order,
)
X = np.random.rand(
batch_size, size, size, input_channels).astype(np.float32)
if order == "NCHW":
X = X.transpose((0, 3, 1, 2))
self.assertDeviceChecks(dc, op, [X], [0])
if method not in ('MaxPool'):
self.assertGradientChecks(gc, op, [X], 0, [0])
@given(stride=st.integers(1, 3),
pad=st.integers(0, 3),
kernel=st.integers(1, 5),
size=st.integers(7, 9),
input_channels=st.integers(1, 3),
batch_size=st.integers(1, 3),
order=st.sampled_from(["NCHW", "NHWC"]),
method=st.sampled_from(["MaxPool", "AveragePool", "LpPool"]),
engine=st.sampled_from(["", "CUDNN"]),
**hu.gcs)
def test_pooling(self, stride, pad, kernel, size,
input_channels, batch_size,
order, method, engine, gc, dc):
assume(pad < kernel)
op = core.CreateOperator(
method,
["X"],
["Y"],
stride=stride,
kernel=kernel,
pad=pad,
order=order,
engine=engine,
)
X = np.random.rand(
batch_size, size, size, input_channels).astype(np.float32)
if order == "NCHW":
X = X.transpose((0, 3, 1, 2))
self.assertDeviceChecks(dc, op, [X], [0])
if method not in ('MaxPool'):
self.assertGradientChecks(gc, op, [X], 0, [0])
@given(size=st.integers(7, 9),
input_channels=st.integers(1, 3),
batch_size=st.integers(1, 3),
order=st.sampled_from(["NCHW", "NHWC"]),
method=st.sampled_from(["MaxPool", "AveragePool", "LpPool"]),
engine=st.sampled_from(["", "CUDNN"]),
**hu.gcs)
def test_global_pooling(self, size, input_channels, batch_size,
order, method, engine, gc, dc):
op = core.CreateOperator(
method,
["X"],
["Y"],
order=order,
engine=engine,
global_pooling=True,
)
X = np.random.rand(
batch_size, size, size, input_channels).astype(np.float32)
if order == "NCHW":
X = X.transpose((0, 3, 1, 2))
self.assertDeviceChecks(dc, op, [X], [0])
if method not in ('MaxPool'):
self.assertGradientChecks(gc, op, [X], 0, [0])
if __name__ == "__main__":
import unittest
unittest.main()