mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-06 12:20:52 +01:00
This can be useful for advanced users (like AOTAutograd) who don't want to keep the corresponding Tensor alive (for memory reasons for example) or when inplace op will change the Tensor's grad_fn (but gradients wrt to the original value is needed). I went minimal API change but open to suggestions. Pull Request resolved: https://github.com/pytorch/pytorch/pull/110867 Approved by: https://github.com/soulitzer
143 lines
4.8 KiB
C++
143 lines
4.8 KiB
C++
#pragma once
|
|
|
|
#include <torch/csrc/python_headers.h>
|
|
|
|
#include <torch/csrc/Exceptions.h>
|
|
#include <torch/csrc/autograd/custom_function.h>
|
|
#include <torch/csrc/autograd/function.h>
|
|
#include <torch/csrc/autograd/saved_variable.h>
|
|
#include <torch/csrc/autograd/variable.h>
|
|
#include <torch/csrc/utils/object_ptr.h>
|
|
|
|
#include <c10/core/DeviceGuard.h>
|
|
#include <c10/util/Optional.h>
|
|
|
|
#include <memory>
|
|
#include <utility>
|
|
#include <vector>
|
|
|
|
namespace torch {
|
|
namespace jit {
|
|
struct Graph;
|
|
}
|
|
} // namespace torch
|
|
namespace torch {
|
|
namespace autograd {
|
|
|
|
// A Function which is implemented by a Python object (i.e., a THPFunction).
|
|
// Calls to 'apply' are forwarded to the Python method implementation.
|
|
struct PyNode : public Node {
|
|
PyNode(THPObjectPtr obj) : obj(obj.release()) {}
|
|
|
|
variable_list apply(variable_list&& inputs) override;
|
|
|
|
void release_variables() override;
|
|
std::string name() const override;
|
|
bool is_traceable() override;
|
|
|
|
void compiled_args(CompiledNodeArgs& args) override;
|
|
variable_list apply_with_saved(
|
|
const variable_list& inputs,
|
|
SwapSavedVariables& saved) override;
|
|
|
|
// THPFunction this Function is wrapping. Owning!
|
|
PyObject* obj;
|
|
|
|
~PyNode() override {
|
|
// Can't use THPObjectPtr as a field in this class; destructor won't take
|
|
// out GIL! When I forgot to do this by hand
|
|
// TestAutograd.test_inplace_view_python called me out about it.
|
|
// If python is already dead, leak the wrapped python objects
|
|
if (Py_IsInitialized()) {
|
|
pybind11::gil_scoped_acquire gil;
|
|
Py_DECREF(obj);
|
|
}
|
|
}
|
|
};
|
|
|
|
/**
|
|
* Cast an object into a tuple, if it is not a tuple already. Returns true
|
|
* if the original object was not a tuple.
|
|
*/
|
|
inline bool ensure_tuple(THPObjectPtr& obj) {
|
|
if (PyTuple_Check(obj.get()))
|
|
return false;
|
|
|
|
PyObject* tuple = PyTuple_New(1);
|
|
if (!tuple)
|
|
throw python_error();
|
|
PyTuple_SET_ITEM(tuple, 0, obj.release());
|
|
obj = tuple;
|
|
return true;
|
|
}
|
|
|
|
} // namespace autograd
|
|
} // namespace torch
|
|
|
|
// NOLINTNEXTLINE(cppcoreguidelines-pro-type-member-init)
|
|
struct THPFunction {
|
|
PyObject_HEAD
|
|
|
|
PyObject* needs_input_grad;
|
|
|
|
// Python tuple of tensors whose variables we should save. Set
|
|
// by Python with 'save_for_backward'. If nullptr, no tensors were
|
|
// saved.
|
|
PyObject* to_save;
|
|
// Python tuple of tensors which are not differentiable. Set by
|
|
// Python with 'mark_non_differentiable'. If nullptr, no tensors were
|
|
// non-differentiable.
|
|
PyObject* non_differentiable;
|
|
// Python tuple of tensors which had inplace updates in the forward()
|
|
// pass. Set by Python with 'mark_dirty'. If nullptr, no tensors were
|
|
// modified inplace.
|
|
PyObject* dirty_tensors;
|
|
|
|
// boolean indicating whether to materialize undefined output grad tensors
|
|
// into tensors full of zeros. Set by Python with 'set_materialize_grads'.
|
|
// Default is true.
|
|
bool materialize_grads;
|
|
|
|
// boolean indicating whether to materialize output grad tensors
|
|
// corresponding to non-differentiable outputs. Normally, someone would
|
|
// already get this behavior by switching off materialize_grads,
|
|
// but there are certain use cases where that is not feasible:
|
|
// https://github.com/pytorch/pytorch/pull/98659#pullrequestreview-1376822560
|
|
bool materialize_non_diff_grads;
|
|
|
|
// This is enabled by compiled autograd as a way to signal to AotAutograd it
|
|
// should call the original FX graph rather than compiling.
|
|
bool compiled_autograd_tracing;
|
|
std::vector<c10::SymInt> compiled_autograd_symints;
|
|
|
|
std::vector<torch::autograd::VariableInfo> output_info;
|
|
std::vector<torch::autograd::VariableInfo> input_info;
|
|
std::vector<torch::autograd::SavedVariable> saved_variables;
|
|
// For each input, true if the input is a THPVariable
|
|
std::vector<bool> is_variable_input;
|
|
char has_freed_buffers;
|
|
|
|
PyObject* saved_for_forward;
|
|
// The actual PyNode (in the autograd graph) that this data was
|
|
// saved for. This field may be NULL (because a user can construct
|
|
// a THPFunction directly from Python), but when this field is non-NULL,
|
|
// it is guaranteed that cdata.lock()->obj == this
|
|
//
|
|
// In most ordinary use, this field should always be non-NULL; e.g.,
|
|
// when we allocate a THPFunction because we are running Node.apply,
|
|
// after constructing a THPFunction, we immediately allocate a PyNode
|
|
// for it. We can't enforce this directly in the constructor of
|
|
// THPFunction though, because there's no way to keep it live long enough
|
|
// to save an owning reference to PyNode into the grad_fn of a Variable.
|
|
std::weak_ptr<torch::autograd::PyNode> cdata;
|
|
};
|
|
|
|
bool THPFunction_initModule(PyObject* module);
|
|
extern PyTypeObject THPFunctionType;
|
|
extern PyObject* THPFunctionClass;
|
|
extern PyObject* THPGradientEdgeClass;
|
|
|
|
inline bool THPFunction_Check(PyObject* obj) {
|
|
return PyObject_IsInstance(obj, (PyObject*)&THPFunctionType);
|
|
}
|