mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-06 12:20:52 +01:00
Summary: Working towards https://github.com/caffe2/caffe2/pull/817. ``` > graph = pydot.Dot(name, rankdir=rankdir) E AttributeError: 'NoneType' object has no attribute 'Dot' ``` https://travis-ci.org/caffe2/caffe2/jobs/243867951 Closes https://github.com/caffe2/caffe2/pull/827 Differential Revision: D5276691 Pulled By: akyrola fbshipit-source-id: 047ee869c029002ace29d84c6b56534b7f23f87b
343 lines
12 KiB
Python
343 lines
12 KiB
Python
# TODO(jiayq): as more and more tests are moving to hypothesis test, we
|
|
# can gradually remove this test script. DO NOT ADD MORE TESTS TO THIS
|
|
# FILE.
|
|
|
|
from __future__ import absolute_import
|
|
from __future__ import division
|
|
from __future__ import print_function
|
|
from __future__ import unicode_literals
|
|
import numpy as np
|
|
from caffe2.python import (
|
|
brew,
|
|
core,
|
|
device_checker,
|
|
gradient_checker,
|
|
model_helper,
|
|
test_util,
|
|
workspace,
|
|
)
|
|
from caffe2.python.gradient_checker import NetGradientChecker
|
|
from caffe2.proto import caffe2_pb2
|
|
|
|
import unittest
|
|
|
|
|
|
if workspace.has_gpu_support and workspace.NumCudaDevices() > 0:
|
|
gpu_device_option = caffe2_pb2.DeviceOption()
|
|
gpu_device_option.device_type = caffe2_pb2.CUDA
|
|
cpu_device_option = caffe2_pb2.DeviceOption()
|
|
gpu_device_checker = device_checker.DeviceChecker(
|
|
0.01, [gpu_device_option]
|
|
)
|
|
device_checker = device_checker.DeviceChecker(
|
|
0.01, [gpu_device_option, cpu_device_option]
|
|
)
|
|
gpu_gradient_checkers = [
|
|
gradient_checker.GradientChecker(
|
|
0.005, 0.05, gpu_device_option, "gpu_checker_ws"
|
|
),
|
|
]
|
|
gradient_checkers = [
|
|
gradient_checker.GradientChecker(
|
|
0.005, 0.05, gpu_device_option, "gpu_checker_ws"
|
|
),
|
|
gradient_checker.GradientChecker(
|
|
0.01, 0.05, cpu_device_option, "cpu_checker_ws"
|
|
),
|
|
]
|
|
else:
|
|
cpu_device_option = caffe2_pb2.DeviceOption()
|
|
gpu_device_option = None
|
|
gpu_device_checker = device_checker.DeviceChecker(
|
|
0.01, []
|
|
)
|
|
device_checker = device_checker.DeviceChecker(0.01, [cpu_device_option])
|
|
|
|
gradient_checkers = [
|
|
gradient_checker.GradientChecker(
|
|
0.01, 0.05, cpu_device_option, "cpu_checker_ws"
|
|
)
|
|
]
|
|
gpu_gradient_checkers = []
|
|
|
|
|
|
class TestLRN(test_util.TestCase):
|
|
|
|
def setUp(self):
|
|
self.test_configs = [(6, 10), (3, 13), ]
|
|
|
|
def testLRN(self):
|
|
for input_size, depth in self.test_configs:
|
|
op = core.CreateOperator("LRN",
|
|
["X"],
|
|
["Y", "Y_scale"],
|
|
size=11,
|
|
alpha=0.001,
|
|
beta=0.5,
|
|
bias=2.0,
|
|
order="NHWC"
|
|
)
|
|
X = np.random.rand(2, input_size, input_size,
|
|
depth).astype(np.float32)
|
|
res = device_checker.CheckSimple(op, [X], [0])
|
|
self.assertTrue(res)
|
|
for checker in gradient_checkers:
|
|
res, grad, grad_estimated = checker.CheckSimple(op, [X], 0, [0])
|
|
self.assertTrue(res)
|
|
|
|
|
|
class TestFlatten(test_util.TestCase):
|
|
|
|
def testFlatten(self):
|
|
op = core.CreateOperator("Flatten", ["X"], ["Y"])
|
|
X = np.random.rand(2, 3, 4, 5).astype(np.float32)
|
|
res = device_checker.CheckSimple(op, [X], [0])
|
|
self.assertTrue(res)
|
|
for checker in gradient_checkers:
|
|
res, grad, grad_estimated = checker.CheckSimple(op, [X], 0, [0])
|
|
self.assertTrue(res)
|
|
|
|
|
|
class TestConcat(test_util.TestCase):
|
|
|
|
def setUp(self):
|
|
self.test_configs = [
|
|
# input_size, depth1, depth2, depth3, depth4
|
|
(3, 2, 3, 4, 5),
|
|
(4, 5, 4, 3, 2),
|
|
]
|
|
|
|
def testConcatNHWC(self):
|
|
for input_size, d1, d2, d3, d4 in self.test_configs:
|
|
op = core.CreateOperator("Concat",
|
|
["X1", "X2", "X3", "X4"],
|
|
["Y", "Y_dims"],
|
|
order="NHWC"
|
|
)
|
|
Xs = [
|
|
np.random.rand(2, input_size, input_size,
|
|
d1).astype(np.float32),
|
|
np.random.rand(2, input_size, input_size,
|
|
d2).astype(np.float32),
|
|
np.random.rand(2, input_size, input_size,
|
|
d3).astype(np.float32),
|
|
np.random.rand(2, input_size, input_size, d4).astype(np.float32)
|
|
]
|
|
for i in range(4):
|
|
res = device_checker.CheckSimple(op, Xs, [0])
|
|
self.assertTrue(res)
|
|
for checker in gradient_checkers:
|
|
res, grad, grad_estimated = checker.CheckSimple(op, Xs, i,
|
|
[0])
|
|
self.assertTrue(res)
|
|
|
|
def testConcatNCHW(self):
|
|
for input_size, d1, d2, d3, d4 in self.test_configs:
|
|
op = core.CreateOperator("Concat",
|
|
["X1", "X2", "X3", "X4"],
|
|
["Y", "Y_dims"],
|
|
order="NCHW"
|
|
)
|
|
Xs = [
|
|
np.random.rand(2, d1, input_size,
|
|
input_size).astype(np.float32),
|
|
np.random.rand(2, d2, input_size,
|
|
input_size).astype(np.float32),
|
|
np.random.rand(2, d3, input_size,
|
|
input_size).astype(np.float32),
|
|
np.random.rand(2, d4, input_size, input_size).astype(np.float32)
|
|
]
|
|
for i in range(4):
|
|
res = device_checker.CheckSimple(op, Xs, [0])
|
|
self.assertTrue(res)
|
|
for checker in gradient_checkers:
|
|
res, grad, grad_estimated = checker.CheckSimple(op, Xs, i,
|
|
[0])
|
|
self.assertTrue(res)
|
|
|
|
|
|
class TestRelu(test_util.TestCase):
|
|
|
|
def setUp(self):
|
|
self.test_configs = [
|
|
# input size
|
|
# (0, 1),
|
|
(1, 1),
|
|
(2, 1),
|
|
(1, 3, 3, 1),
|
|
(2, 3, 3, 1),
|
|
(1, 5, 5, 3),
|
|
(2, 5, 5, 3),
|
|
]
|
|
|
|
def testRelu(self):
|
|
for input_size in self.test_configs:
|
|
op = core.CreateOperator("Relu", ["X"], ["Y"])
|
|
X = np.random.rand(*input_size).astype(np.float32)
|
|
# go away from the origin point to avoid kink problems
|
|
X += 0.01 * np.sign(X)
|
|
X[X == 0] = 0.01
|
|
res = device_checker.CheckSimple(op, [X], [0])
|
|
self.assertTrue(res)
|
|
for checker in gradient_checkers:
|
|
res, grad, grad_estimated = checker.CheckSimple(op, [X], 0, [0])
|
|
self.assertTrue(res)
|
|
|
|
|
|
class TestTanh(test_util.TestCase):
|
|
|
|
def setUp(self):
|
|
self.test_configs = [
|
|
# (0, 1),
|
|
(1, 1),
|
|
(2, 1),
|
|
(1, 2, 3, 4),
|
|
]
|
|
|
|
def testTanh(self):
|
|
for input_size in self.test_configs:
|
|
op = core.CreateOperator("Tanh", ["X"], ["Y"])
|
|
X = np.random.rand(*input_size).astype(np.float32) - 0.5
|
|
res = device_checker.CheckSimple(op, [X], [0])
|
|
self.assertTrue(res)
|
|
for checker in gradient_checkers:
|
|
res, grad, grad_estimated = checker.CheckSimple(op, [X], 0, [0])
|
|
self.assertTrue(res)
|
|
|
|
|
|
class TestExp(test_util.TestCase):
|
|
|
|
def setUp(self):
|
|
self.test_configs = [
|
|
# (0, 1),
|
|
(1, 1),
|
|
(2, 1),
|
|
(1, 2, 3, 4),
|
|
]
|
|
|
|
def testExp(self):
|
|
for input_size in self.test_configs:
|
|
op = core.CreateOperator("Exp", ["X"], ["Y"])
|
|
X = np.random.rand(*input_size).astype(np.float32) - 0.5
|
|
res = device_checker.CheckSimple(op, [X], [0])
|
|
self.assertTrue(res)
|
|
for checker in gradient_checkers:
|
|
res, grad, grad_estimated = checker.CheckSimple(op, [X], 0, [0])
|
|
self.assertTrue(res)
|
|
|
|
|
|
class TestSigmoid(test_util.TestCase):
|
|
|
|
def setUp(self):
|
|
self.test_configs = [
|
|
# (0, 1),
|
|
(1, 1),
|
|
(2, 1),
|
|
(1, 2, 3, 4),
|
|
]
|
|
|
|
def testSigmoid(self):
|
|
for input_size in self.test_configs:
|
|
op = core.CreateOperator("Sigmoid", ["X"], ["Y"])
|
|
X = np.random.rand(*input_size).astype(np.float32) - 0.5
|
|
res = device_checker.CheckSimple(op, [X], [0])
|
|
self.assertTrue(res)
|
|
for checker in gradient_checkers:
|
|
res, grad, grad_estimated = checker.CheckSimple(op, [X], 0, [0])
|
|
self.assertTrue(res)
|
|
|
|
|
|
class TestSum(test_util.TestCase):
|
|
|
|
def setUp(self):
|
|
self.test_configs = [
|
|
# ((0, 1), False),
|
|
((1, 2, 3, 4), True),
|
|
((1, 2, 3, 4), False)]
|
|
|
|
def testSum(self):
|
|
for (input_size, in_place) in self.test_configs:
|
|
op = core.CreateOperator("Sum", ["X1", "X2"],
|
|
["Y" if not in_place else "X1"])
|
|
X1 = np.random.rand(*input_size).astype(np.float32) - 0.5
|
|
X2 = np.random.rand(*input_size).astype(np.float32) - 0.5
|
|
res = device_checker.CheckSimple(op, [X1, X2], [0])
|
|
self.assertTrue(res)
|
|
for checker in gradient_checkers:
|
|
res, grad, grad_estimated = checker.CheckSimple(
|
|
op, [X1, X2], 0, [0])
|
|
self.assertTrue(res)
|
|
|
|
|
|
class TestMakeTwoClass(test_util.TestCase):
|
|
|
|
def setUp(self):
|
|
self.test_configs = [
|
|
# input size
|
|
# (0, 1),
|
|
(1,),
|
|
(7,),
|
|
(1, 3),
|
|
(2, 5),
|
|
]
|
|
|
|
def testMakeTwoClass(self):
|
|
for input_size in self.test_configs:
|
|
op = core.CreateOperator("MakeTwoClass", ["X"], ["Y"])
|
|
X = np.random.rand(*input_size).astype(np.float32)
|
|
# step a little to avoid gradient problems
|
|
X[X < 0.01] += 0.01
|
|
X[X > 0.99] -= 0.01
|
|
res = device_checker.CheckSimple(op, [X], [0])
|
|
self.assertTrue(res)
|
|
for checker in gradient_checkers:
|
|
res, grad, grad_estimated = checker.CheckSimple(op, [X], 0, [0])
|
|
self.assertTrue(res)
|
|
|
|
|
|
class TestNetGradientChecker(test_util.TestCase):
|
|
def test_net_gradient_checker(self):
|
|
model = model_helper.ModelHelper(name="test")
|
|
const = model.net.AddExternalInputs("const1", "const2")
|
|
fc = brew.fc(model, dim_in=3, dim_out=4, blob_in="X", blob_out="Y", axis=0)
|
|
dist = [model.net.SquaredL2Distance([fc, c]) for c in const]
|
|
losses = [model.net.AveragedLoss(d) for d in dist] # using two losses here
|
|
|
|
workspace.RunNetOnce(model.param_init_net)
|
|
NetGradientChecker.Check(
|
|
model.net,
|
|
outputs_with_grad=losses,
|
|
input_values={"X": np.array([1, 2, 3], dtype="float32"),
|
|
const[0]: np.array([1, 1, 1, 1], dtype="float32"),
|
|
const[1]: np.array([2, 2, 2, 2], dtype="float32")},
|
|
input_to_check="X",
|
|
)
|
|
|
|
def test_net_comparison(self):
|
|
# (a + b) * (c + d) == a * c + a * d + b * c + b * d
|
|
net1 = core.Net("net1")
|
|
a, b, c, d = net1.AddExternalInputs("a", "b", "c", "d")
|
|
a_b = net1.Sum([a, b], "a+b")
|
|
c_d = net1.Sum([c, d], "c+d")
|
|
x = net1.Mul([a_b, c_d], "x")
|
|
|
|
net2 = core.Net("net2")
|
|
ac = net2.Mul([a, c], "ac")
|
|
ad = net2.Mul([a, d], "ad")
|
|
bc = net2.Mul([b, c], "bc")
|
|
bd = net2.Mul([b, d], "bd")
|
|
y = net2.Sum([ac, ad, bc, bd], "y")
|
|
|
|
input_values = {blob: np.array([i], dtype=np.float32)
|
|
for i, blob in enumerate([a, b, c, d])}
|
|
|
|
NetGradientChecker.CompareNets(
|
|
[net1, net2], [[x], [y]], [0],
|
|
inputs_with_grads=[a, b, c, d],
|
|
input_values=input_values,
|
|
)
|
|
|
|
if __name__ == '__main__':
|
|
workspace.GlobalInit(["python"])
|
|
unittest.main()
|