pytorch/torch/_vmap_internals.py
Richard Zou 5d1d8a58b8 Enable in_dims for vmap frontend api (#40717)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/40717

`in_dims` specifies which dimension of the input tensors should be
vmapped over. One can also specify `None` as an `in_dim` for a particular
input to indicate that we do not map over said input.

We implement `in_dims` by creating a BatchedTensor with BatchDim equal
to said `in_dim`. Most of this PR is error checking. `in_dims` must
satisfy the following:
- `in_dim` can be either an int or a Tuple[Optional[int]]. If it is an
int, we use it to mean the `in_dim` for every input.
- If `in_dims` is not-None at some index `idx`, then the input at index
`idx` MUST be a tensor (vmap can only map over tensors).

jax supports something more generalized: their `in_dims` can match the
structure of the `inputs` to the function (i.e., it is a nested python
data structure matching the data structure of `inputs` specifying where
in `inputs` the Tensors to be mapped are and what their map dims should
be). We don't have the infrastruture yet so we only support `int` or a
flat tuple for `in_dims`.

Test Plan: - `pytest test/test_vmap.py -v`

Differential Revision: D22397914

Pulled By: zou3519

fbshipit-source-id: 56d2e14be8b6024e4cde2729eff384da305b4ea3
2020-07-06 19:14:43 -07:00

249 lines
11 KiB
Python

import torch
import functools
from torch import Tensor
from typing import Any, Callable, Optional, Tuple, Union
import warnings
REQUIRE_SAME_MAP_SIZE = (
'vmap: Expected all tensors to have the same size in the mapped dimension, '
'got sizes {sizes} for the mapped dimension'
)
ELEMENT_MUST_BE_TENSOR = (
'vmap({fn}, ...): `{fn}` must only return Tensors, got '
'type {out} for return {idx}.'
)
MUST_RETURN_TENSORS = (
'vmap({fn}, ...): `{fn}` must only return Tensors, got '
'type {out} as the return.'
)
NO_INPUTS = (
'vmap({fn})(<inputs>): got no inputs. Maybe you forgot '
'to add inputs, or you are trying to vmap over a '
'function with no inputs. The latter is unsupported.'
)
OUT_DIMS_MUST_BE_INT_OR_TUPLE_OF_INT = (
'vmap({fn}, ..., out_dims={out_dims}): `out_dims` must be an int or a tuple '
'of int representing where in the outputs the vmapped dimension should appear.'
)
OUT_DIMS_AND_NUM_OUTPUTS_MISMATCH = (
'vmap({fn}, ..., out_dims={out_dims}): `out_dims` must have one dim per '
'output (got {num_outputs} outputs) of {fn}.'
)
EXPECTED_IN_DIMS_TO_BE_INT_OR_TUPLE = (
'vmap({fn}, in_dims={in_dims}, ...): expected `in_dims` to be int or tuple, '
'got: {actual_type}.'
)
IN_DIMS_AND_NUM_INPUTS_MISMATCH = (
'vmap({fn}, in_dims={in_dims}, ...)(<inputs>): expected one `in_dim` per '
'input (got {num_inputs} inputs) of {fn}'
)
IN_DIMS_MUST_BE_FLAT_TUPLE = (
'vmap({fn}, in_dims={in_dims}, ...)(<inputs>): in_dims must be a flat '
'tuple containing ints and/or Nones. If you were trying to vmap over a '
'Tensor inside a Python collection in `inputs`, we do not yet support that.'
)
CANT_VMAP_A_NONTENSOR = (
'vmap({fn}, in_dims={in_dims}, ...)(<inputs>): Got in_dim={in_dim} for '
'input {idx}, but input {idx} is not a Tensor (got {arg_type}) so it '
'cannot be vmap\'ed over. If you were trying to vmap over a Tensor inside '
'a Python collection in `inputs`, we do not yet support that; otherwise, '
'use None as the respective in_dim for input {idx}.'
)
IN_DIM_NOT_IN_TENSOR = (
'vmap({fn}, in_dims={in_dims}, ...)(<inputs>): Got in_dim={in_dim} for '
'input {idx}, but input {idx} is a Tensor of dimensionality {tensor_dim} '
'so expected in_dim to satisfy 0 <= in_dim < {tensor_dim}.'
)
in_dims_t = Union[int, Tuple[Optional[int], ...]]
out_dims_t = Union[int, Tuple[int, ...]]
# Checks that all args-to-be-batched have the same batch dim size
def _validate_and_get_batch_size(
in_dims_as_tuple: Tuple[Optional[int], ...],
args: Tuple) -> int:
batch_sizes = [arg.size(in_dim) for in_dim, arg in zip(in_dims_as_tuple, args)
if in_dim is not None]
if batch_sizes and any([size != batch_sizes[0] for size in batch_sizes]):
raise ValueError(REQUIRE_SAME_MAP_SIZE.format(sizes=batch_sizes))
return batch_sizes[0]
# Check compatibility of `in_dims` and `args`. More specifically, checks the following:
# Wherever an in_dim is not None, then the corresponding index in args must be
# a Tensor. Furthermore, tensor must have the `in_dim` (0 <= in_dim < tensor.dim())
def _check_args_can_be_mapped_with_in_dims(
in_dims_as_tuple: Tuple[Optional[int], ...],
args: Tuple,
fn_name: str,
in_dims: in_dims_t) -> None:
for idx, (in_dim, arg) in enumerate(zip(in_dims_as_tuple, args)):
if in_dim is None:
continue
if not isinstance(in_dim, int):
raise ValueError(IN_DIMS_MUST_BE_FLAT_TUPLE.format(
fn=fn_name, in_dims=in_dims))
if not isinstance(arg, Tensor):
raise ValueError(CANT_VMAP_A_NONTENSOR.format(
fn=fn_name, in_dims=in_dims, in_dim=in_dim,
idx=idx, arg_type=str(type(arg))))
# NB: We don't do dimension wrapping here. Consider allowing it in the
# future if there is demand.
if in_dim >= 0 and in_dim < arg.dim():
continue
raise ValueError(IN_DIM_NOT_IN_TENSOR.format(
fn=fn_name, in_dims=in_dims, idx=idx, tensor_dim=arg.dim(), in_dim=in_dim))
def _num_outputs(batched_outputs: Union[Tensor, Tuple[Tensor, ...]]) -> int:
if isinstance(batched_outputs, tuple):
return len(batched_outputs)
return 1
# If value is a tuple, check it has length `num_elements`.
# If value is not a tuple, make a tuple with `value` repeated `num_elements` times
def _as_tuple(value: Any, num_elements: int, error_message_lambda: Callable[[], str]) -> Tuple:
if not isinstance(value, tuple):
return (value,) * num_elements
if len(value) != num_elements:
raise ValueError(error_message_lambda())
return value
# Creates BatchedTensors for every Tensor in arg that should be batched.
# Returns the (potentially) batched arguments and the batch_size.
def _create_batched_inputs(
in_dims: in_dims_t, args: Tuple, vmap_level: int, fn_name: str) -> Tuple[Tuple, int]:
if not isinstance(in_dims, int) and not isinstance(in_dims, tuple):
raise ValueError(EXPECTED_IN_DIMS_TO_BE_INT_OR_TUPLE.format(
fn=fn_name, in_dims=in_dims, actual_type=str(type(in_dims))))
# NB: Checks that len(in_dims) == len(args) (if in_dims is a tuple).
in_dims_as_tuple = _as_tuple(
in_dims, len(args),
lambda: IN_DIMS_AND_NUM_INPUTS_MISMATCH.format(
fn=fn_name, in_dims=in_dims, num_inputs=len(args)))
if len(args) == 0:
raise ValueError(NO_INPUTS.format(fn=fn_name))
_check_args_can_be_mapped_with_in_dims(in_dims_as_tuple, args, fn_name, in_dims)
batch_size = _validate_and_get_batch_size(in_dims_as_tuple, args)
# See NOTE [Ignored _remove_batch_dim, _add_batch_dim]
batched_inputs = tuple(arg if in_dim is None else
torch._add_batch_dim(arg, in_dim, vmap_level) # type: ignore
for in_dim, arg in zip(in_dims_as_tuple, args))
return batched_inputs, batch_size
# Undos the batching (and any batch dimensions) associated with the `vmap_level`.
def _unwrap_batched(
batched_outputs: Union[Tensor, Tuple[Tensor, ...]],
out_dims: out_dims_t,
vmap_level: int, batch_size: int, fn_name: str) -> Tuple:
num_outputs = _num_outputs(batched_outputs)
out_dims_as_tuple = _as_tuple(
out_dims, num_outputs,
lambda: OUT_DIMS_AND_NUM_OUTPUTS_MISMATCH.format(
fn=fn_name, out_dims=out_dims, num_outputs=num_outputs))
# NOTE [Ignored _remove_batch_dim, _add_batch_dim]
# There is something wrong with our type bindings for functions that begin
# with '_', see #40397.
if isinstance(batched_outputs, Tensor):
out_dim = out_dims_as_tuple[0]
return torch._remove_batch_dim(batched_outputs, vmap_level, batch_size, out_dim) # type: ignore
return tuple(torch._remove_batch_dim(out, vmap_level, batch_size, out_dim) # type: ignore
for out, out_dim in zip(batched_outputs, out_dims_as_tuple))
# Checks that `fn` returned one or more Tensors and nothing else.
# NB: A python function that return multiple arguments returns a single tuple,
# so we are effectively checking that `outputs` is a single Tensor or a tuple of
# Tensors.
def _validate_outputs(outputs: Any, fn_name: str) -> None:
if isinstance(outputs, Tensor):
return
if not isinstance(outputs, tuple):
raise ValueError(MUST_RETURN_TENSORS.format(fn=fn_name, out=type(outputs)))
for idx, output in enumerate(outputs):
if isinstance(output, Tensor):
continue
raise ValueError(ELEMENT_MUST_BE_TENSOR.format(fn=fn_name, out=type(output), idx=idx))
def _check_out_dims_is_int_or_int_tuple(out_dims: out_dims_t, fn_name: str) -> None:
if isinstance(out_dims, int):
return
if not isinstance(out_dims, tuple) or \
not all([isinstance(out_dim, int) for out_dim in out_dims]):
raise ValueError(OUT_DIMS_MUST_BE_INT_OR_TUPLE_OF_INT.format(out_dims=out_dims, fn=fn_name))
# This is the global tracker for how many nested vmaps we are currently inside.
VMAP_LEVEL: int = 0
# vmap(func)(inputs) wraps all Tensor inputs to be batched in BatchedTensors,
# sends those into func, and then unwraps the output BatchedTensors. Operations
# on BatchedTensors perform the batched operations that the user is asking for.
def vmap(func: Callable, in_dims: in_dims_t = 0, out_dims: out_dims_t = 0) -> Callable:
"""
vmap is the vectorizing map. Returns a new function that maps `func` over some
dimension of the inputs. Semantically, vmap pushes the map into PyTorch
operations called by `func`, effectively vectorizing those operations.
vmap is useful for handling batch dimensions: one can write a function `func`
that runs on examples and the lift it to a function that can take batches of
examples with `vmap(func)`. Furthermore, it is possible to use vmap to obtain
batched gradients when composed with autograd.
Args:
func (function): A Python function that takes one or more arguments.
Must return one or more Tensors.
in_dims (int or Tuple[Optional[int]]): Specifies which dimension of the
inputs should be mapped over. If `in_dims` is a Tuple, then it should have
one element per input. If the `in_dim` for a particular input is
None, then that indicates there is no map dimension. Default: 0.
out_dims (int or Tuple[int]): Specifies where the mapped dimension
should appear in the outputs. If `out_dims` is a Tuple, then it should
have one element per output. Default: 0.
Returns:
Returns a new "batched" function. It takes the same inputs as `func`,
except each input has an extra dimension at the index specified by `in_dims`.
It takes returns the same outputs as `func`, except each output has
an extra dimension at the index specified by `out_dims`.
.. warning:
vmap works best with functional-style code. Please do not perform any
side-effects in `func`, with the exception of in-place PyTorch operations.
Examples of side-effects include mutating Python data structures and
assigning values to variables not captured in `func`.
.. warning::
torch.vmap is an experimental prototype that is subject to
change and/or deletion. Please use at your own risk.
"""
warnings.warn(
'torch.vmap is an experimental prototype that is subject to '
'change and/or deletion. Please use at your own risk.')
@functools.wraps(func)
def wrapped(*args):
fn_name = func.__name__
_check_out_dims_is_int_or_int_tuple(out_dims, fn_name)
global VMAP_LEVEL
VMAP_LEVEL += 1
try:
batched_inputs, batch_size = _create_batched_inputs(in_dims, args, VMAP_LEVEL, fn_name)
batched_outputs = func(*batched_inputs)
_validate_outputs(batched_outputs, fn_name)
return _unwrap_batched(batched_outputs, out_dims, VMAP_LEVEL, batch_size, fn_name)
finally:
VMAP_LEVEL -= 1
return wrapped