mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-07 12:21:27 +01:00
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/56598 Test Plan: NA Reviewed By: SciPioneer Differential Revision: D27913170 fbshipit-source-id: 3439d18141131b02d55f2ca399a4c795cba2b04b
97 lines
3.1 KiB
Python
97 lines
3.1 KiB
Python
import sys
|
|
import tempfile
|
|
|
|
import torch
|
|
import torch.distributed as c10d
|
|
import torch.multiprocessing as mp
|
|
from torch.testing._internal.common_utils import NO_MULTIPROCESSING_SPAWN
|
|
from torch.testing._internal.common_utils import load_tests
|
|
|
|
# Torch distributed.nn is not available in windows
|
|
# check #42095, it errors on import.
|
|
_torch_dist_nn_available = True
|
|
try:
|
|
import torch.distributed.nn
|
|
except ImportError:
|
|
_torch_dist_nn_available = False
|
|
|
|
# load_tests from common_utils is used to automatically filter tests for
|
|
# sharding on sandcastle. This line silences flake warnings
|
|
load_tests = load_tests
|
|
|
|
if not c10d.is_available():
|
|
print('c10d not available, skipping tests', file=sys.stderr)
|
|
sys.exit(0)
|
|
|
|
if NO_MULTIPROCESSING_SPAWN:
|
|
print('spawn not available, skipping tests', file=sys.stderr)
|
|
sys.exit(0)
|
|
|
|
|
|
class AbstractProcessGroupShareTensorTest(object):
|
|
world_size = 2
|
|
|
|
def _test_multiprocess(self, f, shared_tensors, init_pg, n_output):
|
|
ws = self.world_size
|
|
# file store will delete the test file on destruction
|
|
file = tempfile.NamedTemporaryFile(delete=False)
|
|
ctx = mp.get_context('spawn')
|
|
c2p = ctx.Queue(2)
|
|
p2c = ctx.Queue(2)
|
|
ps = []
|
|
for i in range(ws):
|
|
p = ctx.Process(
|
|
target=f,
|
|
args=(i, file.name, shared_tensors, ws, init_pg, c2p, p2c))
|
|
|
|
p.start()
|
|
ps.append(p)
|
|
|
|
for _ in range(ws * n_output):
|
|
pid, expected, result = c2p.get()
|
|
self.assertEqual(
|
|
expected,
|
|
result,
|
|
msg=(
|
|
"Expect rank {} to receive tensor {} but got {}."
|
|
).format(pid, expected, result)
|
|
)
|
|
|
|
for _ in range(ws):
|
|
p2c.put(0)
|
|
|
|
for p in ps:
|
|
p.join(2)
|
|
|
|
# Why classmethod? multiprocessing cannot pickle TestCase subclass when in
|
|
# spawn mode. See https://bugs.python.org/issue33884.
|
|
@classmethod
|
|
def _test_broadcast_process(
|
|
cls, rank, filename, shared_tensors, world_size, init_pg, c2p, p2c):
|
|
pg = init_pg(rank, filename, world_size)
|
|
xs = [shared_tensors[rank]]
|
|
pg.broadcast(xs).wait()
|
|
c2p.put((rank, torch.zeros(2, 2), xs[0].to("cpu")))
|
|
p2c.get()
|
|
|
|
@classmethod
|
|
def _test_allreduce_process(
|
|
cls, rank, filename, shared_tensors, world_size, init_pg, c2p, p2c):
|
|
pg = init_pg(rank, filename, world_size)
|
|
xs = [shared_tensors[rank]]
|
|
pg.allreduce(xs, op=c10d.ReduceOp.SUM).wait()
|
|
c2p.put((rank, torch.ones(2, 2) * 2, xs[0].to("cpu")))
|
|
p2c.get()
|
|
|
|
@classmethod
|
|
def _test_allgather_process(
|
|
cls, rank, filename, shared_tensors, world_size, init_pg, c2p, p2c):
|
|
pg = init_pg(rank, filename, world_size)
|
|
xs = [shared_tensors[rank]]
|
|
ys = [[torch.zeros_like(xs[0]) for i in range(world_size)]]
|
|
pg.allgather(ys, xs).wait()
|
|
for i in range(world_size):
|
|
c2p.put((rank, torch.ones(2, 2) * i, ys[0][i].to("cpu")))
|
|
|
|
p2c.get()
|