pytorch/caffe2/python/layer_model_instantiator.py
Thomas Dudziak 47e921ba49 Remove map() and filter() in favor of comprehensions
Summary: These return views in Python 3 which would not do anything in a lot of usages currently present in Caffe2. This diff simply removes (almost) all usages of these two in Caffe2 and sub projects in favor of comprehensions which are also easier to read/understand

Reviewed By: akyrola

Differential Revision: D5142049

fbshipit-source-id: e800631d2df7d0823fed698cae46c486038007dc
2017-05-30 15:32:58 -07:00

105 lines
3.5 KiB
Python

## @package layer_model_instantiator
# Module caffe2.python.layer_model_instantiator
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
from caffe2.python import core, schema
from caffe2.python.layers.layers import InstantiationContext
from caffe2.python.layers.tags import Tags
def _filter_layers(layers, include_tags):
if include_tags is None:
return layers
include_tags = set(include_tags)
return [l for l in layers if not include_tags.isdisjoint(l.tags)]
def shrink_output_schema(net, out_schema):
if len(out_schema.field_names()) <= 1:
return out_schema
exists = [net.BlobIsDefined(blob) for blob in out_schema.field_blobs()]
return schema.from_column_list(
[
col_name for ok, col_name in
zip(exists, out_schema.field_names()) if ok
],
[
col_type for ok, col_type in
zip(exists, out_schema.field_types()) if ok
],
[
col_blob for ok, col_blob in
zip(exists, out_schema.field_blobs()) if ok
],
[
col_meta for ok, col_meta in
zip(exists, out_schema.field_metadata()) if ok
]
)
def generate_predict_net(model, include_tags=None):
predict_net = core.Net('predict_net')
for layer in _filter_layers(model.layers, include_tags):
if Tags.EXCLUDE_FROM_PREDICTION not in layer.tags:
layer.add_operators(
predict_net, context=InstantiationContext.PREDICTION)
predict_net.set_input_record(model.input_feature_schema.clone())
output_schema = shrink_output_schema(
predict_net, model.output_schema.clone()
)
predict_net.set_output_record(output_schema)
return predict_net
def generate_eval_net(model, include_tags=None):
eval_net = core.Net('eval_net')
for layer in _filter_layers(model.layers, include_tags):
if Tags.EXCLUDE_FROM_EVAL not in layer.tags:
layer.add_operators(eval_net, context=InstantiationContext.EVAL)
input_schema = model.input_feature_schema + model.trainer_extra_schema
eval_net.set_input_record(input_schema)
output_schema = shrink_output_schema(
eval_net, model.output_schema + model.metrics_schema
)
eval_net.set_output_record(output_schema)
return eval_net
def _generate_training_net_only(model, include_tags=None):
train_net = core.Net('train_net')
train_init_net = model.create_init_net('train_init_net')
for layer in _filter_layers(model.layers, include_tags):
if Tags.EXCLUDE_FROM_TRAIN not in layer.tags:
layer.add_operators(train_net, train_init_net)
input_schema = model.input_feature_schema + model.trainer_extra_schema
train_net.set_input_record(input_schema)
output_schema = shrink_output_schema(
train_net, model.output_schema + model.metrics_schema
)
train_net.set_output_record(output_schema)
return train_init_net, train_net
def generate_training_nets_forward_only(model, include_tags=None):
train_init_net, train_net = _generate_training_net_only(model, include_tags)
return train_init_net, train_net
def generate_training_nets(model, include_tags=None):
train_init_net, train_net = _generate_training_net_only(model, include_tags)
loss = model.loss
grad_map = train_net.AddGradientOperators(loss.field_blobs())
model.apply_optimizers(train_net, train_init_net, grad_map)
return train_init_net, train_net