mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-06 12:20:52 +01:00
fix #78119 Why: As in onnx tests verification code, we used to only consider tracing output, which ignores None type, this PR enables runtime test to keep None type in torch in script mode. 1. Move Optional Type tests from no runtime to runtime, as it's supported by ONNXRUNTIME. 2. Add ignoreNone flag for output comparison of internal tests Pull Request resolved: https://github.com/pytorch/pytorch/pull/83184 Approved by: https://github.com/justinchuby, https://github.com/BowenBao
183 lines
5.7 KiB
Python
183 lines
5.7 KiB
Python
# Owner(s): ["module: onnx"]
|
|
import onnxruntime
|
|
|
|
import torch
|
|
from pytorch_test_common import skipIfNoCuda
|
|
from torch.onnx import verification
|
|
from torch.testing._internal import common_utils
|
|
|
|
|
|
def _jit_graph_to_onnx_model(graph, operator_export_type, opset_version):
|
|
r"""
|
|
This function exports torch::jit::Graph object
|
|
to serialized ONNX ModelProto.
|
|
This function is for testing purpose.
|
|
It only keeps the essential parts for IR graph conversions.
|
|
It also does not interact with actual PyTorch modules nor
|
|
PyTorch tensor inputs.
|
|
"""
|
|
|
|
torch.onnx.symbolic_helper._set_opset_version(opset_version)
|
|
graph = torch.onnx.utils._optimize_graph(
|
|
graph, operator_export_type, params_dict={}
|
|
)
|
|
proto, _, _, _ = graph._export_onnx(
|
|
{},
|
|
opset_version,
|
|
{},
|
|
False,
|
|
operator_export_type,
|
|
False,
|
|
False,
|
|
{},
|
|
True,
|
|
"",
|
|
{},
|
|
)
|
|
return proto
|
|
|
|
|
|
class _TestJITIRToONNX:
|
|
"""Abstract base class for test cases.
|
|
|
|
Intentionally not a sub-class of unittest.TestCase so that unittest / pytest
|
|
don't run it directly. unitest.TestCase is mixed in as another base class when
|
|
creating concrete sub-types. See MakeTestCase().
|
|
"""
|
|
|
|
opset_version = -1 # Sub-classes must override
|
|
ort_providers = ["CPUExecutionProvider"]
|
|
check_shape = True
|
|
check_dtype = True
|
|
ignore_none = True # True for tracing, and Flase for scripting
|
|
|
|
def run_test(self, graph_ir, example_inputs):
|
|
graph = torch._C.parse_ir(graph_ir)
|
|
jit_outs = torch._C._jit_interpret_graph(graph, example_inputs)
|
|
|
|
onnx_proto = _jit_graph_to_onnx_model(
|
|
graph, torch.onnx.OperatorExportTypes.ONNX, self.opset_version
|
|
)
|
|
ort_sess = onnxruntime.InferenceSession(
|
|
onnx_proto, providers=self.ort_providers
|
|
)
|
|
ort_outs = verification._run_ort(ort_sess, example_inputs)
|
|
|
|
verification._compare_ort_pytorch_outputs(
|
|
ort_outs,
|
|
jit_outs,
|
|
rtol=1e-3,
|
|
atol=1e-7,
|
|
check_shape=self.check_shape,
|
|
check_dtype=self.check_dtype,
|
|
ignore_none=self.ignore_none,
|
|
acceptable_error_percentage=None,
|
|
)
|
|
|
|
def test_example_ir(self):
|
|
graph_ir = """
|
|
graph(%1 : Float(2, 3),
|
|
%2 : Float(2, 3)):
|
|
%3 : int = prim::Constant[value=1]()
|
|
%4 : Float(2, 3) = aten::add(%1, %2, %3)
|
|
return (%4)
|
|
"""
|
|
a = torch.randn(2, 3)
|
|
b = torch.randn(2, 3)
|
|
self.run_test(graph_ir, (a, b))
|
|
|
|
def test_add_sub_with_graph_inputs(self):
|
|
for op in ["add", "sub", "rsub"]:
|
|
graph_ir = f"""
|
|
graph(%1 : Float(2, 3),
|
|
%2 : Float(2, 3),
|
|
%3 : int):
|
|
%4 : Float(2, 3) = aten::{op}(%1, %2, %3)
|
|
return (%4)
|
|
"""
|
|
a = torch.randn(2, 3)
|
|
b = torch.randn(2, 3)
|
|
self.run_test(graph_ir, (a, b, 2))
|
|
|
|
def test_native_layer_norm(self):
|
|
graph_ir = """
|
|
graph(%x : Float(2, 3, 2),
|
|
%w : Float(3, 2),
|
|
%b : Float(3, 2)):
|
|
%5 : int = prim::Constant[value=3]()
|
|
%6 : int = prim::Constant[value=2]()
|
|
%7 : int[] = prim::ListConstruct(%5, %6)
|
|
%10 : float = prim::Constant[value=1.0000000000000001e-05]()
|
|
%11 : Float(2, 3, 2), %12 : Float(2, 1, 1), %13 : Float(2, 1, 1) = aten::native_layer_norm(%x, %7, %w, %b, %10)
|
|
return (%11, %12, %13)
|
|
"""
|
|
x = torch.randn(2, 3, 2)
|
|
w = torch.randn(3, 2)
|
|
b = torch.randn(3, 2)
|
|
self.run_test(graph_ir, (x, w, b))
|
|
|
|
def test_convolution(self):
|
|
graph_ir = """
|
|
graph(%1 : Tensor,
|
|
%2 : Tensor):
|
|
%3 : NoneType = prim::Constant()
|
|
%4 : int[] = prim::Constant[value=[1, 1]]()
|
|
%5 : int[] = prim::Constant[value=[0, 0]]()
|
|
%6 : bool = prim::Constant[value=0]()
|
|
%7 : int = prim::Constant[value=1]()
|
|
%8 : Tensor = aten::convolution(%1, %2, %3, %4, %5, %4, %6, %5, %7)
|
|
return (%8)
|
|
"""
|
|
x = torch.randn(8, 1, 5, 5)
|
|
w = torch.randn(4, 1, 3, 3)
|
|
self.run_test(graph_ir, (x, w))
|
|
|
|
def test_log_softmax(self):
|
|
graph_ir = """
|
|
graph(%x: Tensor):
|
|
%half_to_float: bool = prim::Constant[value=0]()
|
|
%dim: int = prim::Constant[value=1]()
|
|
%y = aten::_log_softmax(%x, %dim, %half_to_float)
|
|
return (%y)
|
|
"""
|
|
x = torch.randn(5, 2)
|
|
self.run_test(graph_ir, (x,))
|
|
|
|
@skipIfNoCuda
|
|
def test_log_softmax_half_to_float(self):
|
|
graph_ir = """
|
|
graph(%x: Tensor):
|
|
%half_to_float: bool = prim::Constant[value=1]()
|
|
%dim: int = prim::Constant[value=1]()
|
|
%y = aten::_log_softmax(%x, %dim, %half_to_float)
|
|
return (%y)
|
|
"""
|
|
x = torch.randn(5, 2).half().to("cuda")
|
|
self.run_test(graph_ir, (x,))
|
|
|
|
def test_native_dropout(self):
|
|
graph_ir = """
|
|
graph(%1 : Float(2, 3)):
|
|
%2 : float = prim::Constant[value=0.0]()
|
|
%training : bool = prim::Constant[value=1]()
|
|
%3 : Tensor, %4 : Tensor = aten::native_dropout(%1, %2, %training)
|
|
return (%3, %4)
|
|
"""
|
|
a = torch.randn(2, 3)
|
|
self.run_test(graph_ir, (a,))
|
|
|
|
|
|
def MakeTestCase(opset_version: int) -> type:
|
|
name = f"TestJITIRToONNX_opset{opset_version}"
|
|
return type(
|
|
str(name),
|
|
(common_utils.TestCase,),
|
|
dict(_TestJITIRToONNX.__dict__, opset_version=opset_version),
|
|
)
|
|
|
|
|
|
TestJITIRToONNX_opset14 = MakeTestCase(14)
|
|
|
|
if __name__ == "__main__":
|
|
common_utils.run_tests()
|