mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-06 12:20:52 +01:00
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/48160 We no longer use the custom c++ test infra anyways, so move to pure gtest. Fixes #45703 ghstack-source-id: 116977283 Test Plan: `buck test //caffe2/test/cpp/tensorexpr` Reviewed By: navahgar, nickgg Differential Revision: D25046618 fbshipit-source-id: da34183d87465f410379048148c28e1623618553
101 lines
2.4 KiB
C++
101 lines
2.4 KiB
C++
#include <gtest/gtest.h>
|
|
|
|
#include <stdexcept>
|
|
#include "test/cpp/tensorexpr/test_base.h"
|
|
|
|
#include <torch/csrc/jit/tensorexpr/expr.h>
|
|
#include <torch/csrc/jit/tensorexpr/ir.h>
|
|
#include <torch/csrc/jit/tensorexpr/ir_printer.h>
|
|
#include <torch/csrc/jit/tensorexpr/loopnest.h>
|
|
#include <torch/csrc/jit/tensorexpr/tensor.h>
|
|
#include <torch/csrc/jit/testing/file_check.h>
|
|
|
|
#include <sstream>
|
|
namespace torch {
|
|
namespace jit {
|
|
|
|
using namespace torch::jit::tensorexpr;
|
|
|
|
TEST(IRPrinter, BasicValueTest) {
|
|
KernelScope kernel_scope;
|
|
ExprHandle a = IntImm::make(2), b = IntImm::make(3);
|
|
ExprHandle c = Add::make(a, b);
|
|
|
|
std::stringstream ss;
|
|
ss << c;
|
|
ASSERT_EQ(ss.str(), "2 + 3");
|
|
}
|
|
|
|
TEST(IRPrinter, BasicValueTest02) {
|
|
KernelScope kernel_scope;
|
|
ExprHandle a(2.0f);
|
|
ExprHandle b(3.0f);
|
|
ExprHandle c(4.0f);
|
|
ExprHandle d(5.0f);
|
|
ExprHandle f = (a + b) - (c + d);
|
|
|
|
std::stringstream ss;
|
|
ss << f;
|
|
ASSERT_EQ(ss.str(), "(2.f + 3.f) - (4.f + 5.f)");
|
|
}
|
|
|
|
TEST(IRPrinter, CastTest) {
|
|
KernelScope kernel_scope;
|
|
VarHandle x("x", kHalf);
|
|
VarHandle y("y", kFloat);
|
|
ExprHandle body = ExprHandle(2.f) +
|
|
(Cast::make(kFloat, x) * ExprHandle(3.f) + ExprHandle(4.f) * y);
|
|
|
|
std::stringstream ss;
|
|
ss << body;
|
|
ASSERT_EQ(ss.str(), "2.f + (float(x) * 3.f + 4.f * y)");
|
|
}
|
|
|
|
TEST(IRPrinter, FunctionName) {
|
|
KernelScope kernel_scope;
|
|
int M = 4;
|
|
int N = 20;
|
|
|
|
Tensor* producer = Compute(
|
|
"producer",
|
|
{{M, "m"}, {N, "n"}},
|
|
[&](const ExprHandle& m, const ExprHandle& n) { return m * n; });
|
|
|
|
Tensor* chunk_0 = Compute(
|
|
"chunk",
|
|
{{M, "m"}, {N / 2, "n"}},
|
|
[&](const ExprHandle& m, const ExprHandle& n) {
|
|
return producer->call(m, n);
|
|
});
|
|
|
|
Tensor* chunk_1 = Compute(
|
|
"chunk",
|
|
{{M, "m"}, {N / 2, "n"}},
|
|
[&](const ExprHandle& m, const ExprHandle& n) {
|
|
return producer->call(m, n + ExprHandle(N / 2));
|
|
});
|
|
|
|
Tensor* consumer = Compute(
|
|
"consumer",
|
|
{{M, "i"}, {N / 2, "j"}},
|
|
[&](const ExprHandle& i, const ExprHandle& j) {
|
|
return i * chunk_1->call(i, j);
|
|
});
|
|
|
|
LoopNest l({chunk_0, chunk_1, consumer});
|
|
auto* body = l.root_stmt();
|
|
|
|
std::stringstream ss;
|
|
ss << *body;
|
|
|
|
const std::string& verification_pattern =
|
|
R"IR(
|
|
# CHECK: for (int i
|
|
# CHECK: for (int j
|
|
# CHECK: consumer[i, j] = i * (chunk_1(i, j)IR";
|
|
|
|
torch::jit::testing::FileCheck().run(verification_pattern, ss.str());
|
|
}
|
|
} // namespace jit
|
|
} // namespace torch
|