pytorch/test/cpp/jit/test_peephole_optimize.cpp
Michael Suo 22401b850b port all JIT tests to gtest (#45264)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/45264

Context for why we are porting to gtest in: https://github.com/pytorch/pytorch/pull/45018.

This PR completes the process of porting and removes unused files/macros.

Test Plan: Imported from OSS

Reviewed By: ZolotukhinM

Differential Revision: D23901392

Pulled By: suo

fbshipit-source-id: 89526890e1a49462f3f77718f4ee273c5bc578ba
2020-09-25 11:37:43 -07:00

120 lines
2.8 KiB
C++

#include <gtest/gtest.h>
#include <test/cpp/jit/test_utils.h>
#include <torch/csrc/jit/ir/ir.h>
#include <torch/csrc/jit/ir/irparser.h>
#include <torch/csrc/jit/passes/peephole.h>
namespace torch {
namespace jit {
TEST(PeepholeOptimizeTest, IsAndIsNot)
// test is / is not none optimization
{
auto graph = std::make_shared<Graph>();
parseIR(
R"IR(
graph(%0 : int):
%1 : None = prim::Constant()
%2 : bool = aten::__is__(%0, %1)
%3 : bool = aten::__isnot__(%0, %1)
return (%2, %3)
)IR",
graph.get());
PeepholeOptimize(graph);
testing::FileCheck()
.check_not("aten::__is__")
->check_not("aten::__isnot__")
->run(*graph);
}
TEST(PeepholeOptimizeTest, IsAndIsNot2) {
auto graph = std::make_shared<Graph>();
parseIR(
R"IR(
graph(%0: int?):
%1 : None = prim::Constant()
%2 : bool = aten::__is__(%0, %1)
%3 : bool = aten::__isnot__(%0, %1)
return (%2, %3)
)IR",
graph.get());
PeepholeOptimize(graph);
testing::FileCheck()
.check("aten::__is__")
->check("aten::__isnot__")
->run(*graph);
}
TEST(PeepholeOptimizeTest, IsAndIsNot3) {
auto graph = std::make_shared<Graph>();
parseIR(
R"IR(
graph(%0: int?):
%1 : Tensor = prim::AutogradZero()
%2 : None = prim::Constant()
%4 : bool = aten::__is__(%0, %1)
%5 : bool = aten::__isnot__(%1, %2)
return (%4, %5)
)IR",
graph.get());
PeepholeOptimize(graph);
testing::FileCheck()
.check("aten::__is__")
->check_not("aten::__isnot__")
->run(*graph);
}
TEST(PeepholeOptimizeTest, UnwrapOptional)
// test unwrap optional
{
auto graph = std::make_shared<Graph>();
parseIR(
R"IR(
graph():
%1 : Float(*, *, *) = prim::Constant()
%2 : bool = aten::_unwrap_optional(%1)
%3 : bool = prim::unchecked_unwrap_optional(%1)
return (%2, %3)
)IR",
graph.get());
PeepholeOptimize(graph);
testing::FileCheck().check_not("unwrap")->run(*graph);
}
TEST(PeepholeOptimizeTest, UnwrapOptional2) {
auto graph = std::make_shared<Graph>();
parseIR(
R"IR(
graph(%1 : Float(*, *, *)?):
%2 : bool = aten::_unwrap_optional(%1)
%3 : bool = prim::unchecked_unwrap_optional(%1)
return (%2, %3)
)IR",
graph.get());
PeepholeOptimize(graph);
testing::FileCheck().check_count("unwrap", 2)->run(*graph);
}
TEST(PeepholeOptimizeTest, AddMMFusion) {
auto graph = std::make_shared<Graph>();
parseIR(
R"IR(
graph(
%0 : Float(2, 3, 4),
%1 : Float(2, 3, 4),
%2 : Float(1, 1, 1)):
%3 : int = prim::Constant[value=1]()
%4 : Tensor = aten::mm(%0, %1)
%5 : Tensor = aten::add(%4, %2, %3)
%6 : Tensor = aten::add(%5, %2, %3)
return (%6)
)IR",
graph.get());
FuseAddMM(graph);
testing::FileCheck().check("addmm")->run(*graph);
}
} // namespace jit
} // namespace torch