mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-06 12:20:52 +01:00
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/53068 Adds a ```bool is_available()``` method to the backend contract: it returns ```true``` if ```compile()``` and ```execute()``` can be called; ```false``` otherwise. It is used to implement the following changes in the ```LoweredModule```: * ```compile()``` in ```__setstate__``` will run if ```is_available()```, else ```__setstate__``` throws an exception (“Backend not available.”). * ```compile()``` at ```LoweredModule``` creation will run if ```is_available()```, else a WARNING will be thrown. * ```execute()``` will only be executed if ```is_available()``` returns true; else throws an exception (“Backend not available.”). The goal of these changes is to ensure we have a well defined behaviour for the different combinations of backend availability on-host and on-target. More specifically, backends may have different capabilities to compile and/or execute the Module, depending whether this happens on-host (i.e. where the program is being written) or on-target (where the program is being executed). First of all, we know that "preprocess" always takes place, and that only happens on-host at creation time. So, we can assume that any compilation is needed/possible on-host then all of it could be pushed here. Overall, we want to ensure the following: **On host** | compile | execute | Outcome | | -- | -- | -- | | No | No | On module creation, LoweredModule is generated, with a warning (since compilation and execution can still take place on-target). On module load, throws an exception (since execution is not possible). | | No | Yes | This configuration should not be possible. This assumes the full compiler is not available, even if some work was done in preprocess the program cannot be finalized for execution. | | Yes | No | In this case, the expectation would be for is_available() to return false, and compilation logic to move into preprocess. | | Yes | Yes | All good. This is the only case that is_available() should return true. | **On target** | compile | execute | Outcome | | -- | -- | -- | | No | No | Loading the LoweredModule throws an exception. Since execution is not possible. | | No | Yes | Basically this is another instance of Yes/Yes: compilation per se may not be possible on device, which means compile() can be called without issue but it is a no-op, and thus is_available should return true. Consequently, loading the LoweredModule: Succeeds, if the preprocessed module is ready for execution. Fails with exception otherwise. | | Yes | No | This configuration should not be possible. Just putting here for completeness. | | Yes | Yes | All good. This, along with No/Yes case (because compilation is assumed to have happened on-host, so it's just another instance of Yes/Yes), are the cases where is_available() should return true. | **Refactoring existing code** This change also updates other backends (Glow) code, to implement the is_available() method to have the same behaviour as before this change (i.e. always available). This should not cause backward incompatibilities with already saved models since we're adding a new method to the PyTorchBackendInterface. Models saved with the old interface that didn't have is_available() will still find the other 2 methods in the bound object (i.e. compile and execute), and the saved LoweredModule logic will be the old one. **Future** We plan to use is_available() to implement support for fallback to the PyTorch interpreter. ghstack-source-id: 123498571 Test Plan: Added C++ (test_backend.cpp) and Python (test_backends.py) tests to validate the exceptions. Reviewed By: jackm321, spaugh, iseeyuan Differential Revision: D26615833 fbshipit-source-id: 562e8b11db25784348b5f86bbc4179aedf15e0d3
163 lines
5.3 KiB
C++
163 lines
5.3 KiB
C++
#include <torch/csrc/jit/backends/backend.h>
|
|
|
|
namespace torch {
|
|
namespace jit {
|
|
|
|
// Implementation of a PyTorch Backend that can process, compile and execute
|
|
// TorchScript Modules composed of 'add' and 'sub' operators. It just supports
|
|
// for modules that implement a sum or subtraction of 2 inputs (i.e. in1 + in2
|
|
// or in1 - in2). Hence the methods of the models expect exactly 2 inputs of
|
|
// type Tensor. This backend is used to demonstrate the flow of compilation and
|
|
// execution with minimum amount of work. It's not intended to a practical
|
|
// backend that can be used for actual inference.
|
|
|
|
// Implementation details:
|
|
//
|
|
// Compilation
|
|
// 1. A backend with minimum compilation features, "backend_with_compiler_demo"
|
|
// is added.
|
|
// 2. The compilation happens AOT in the preprocess function registered to this
|
|
// backend.
|
|
// 3. Compiled results are stored in a string blob for each method. They are
|
|
// serialized to the lowered module with __getstate__ function.
|
|
// 4. Error message with model source code is thrown, for features not handled
|
|
// by the backend compiler.
|
|
//
|
|
// Runtime
|
|
// 1. The compiled blob is loaded in __setstate__ method.
|
|
// 2. The compile function of the backend: parse the preprocessed blob to the
|
|
// format (a list of tokens) that the backend can understand.
|
|
// 3. The execute function of the backend executes the specified method
|
|
// (handle).
|
|
|
|
namespace {
|
|
std::vector<std::string> parseMethodHandle(const std::string& blob) {
|
|
std::vector<std::string> result;
|
|
std::stringstream s_stream(blob);
|
|
while (s_stream.good()) {
|
|
std::string substr;
|
|
getline(s_stream, substr, ',');
|
|
result.push_back(substr);
|
|
}
|
|
return result;
|
|
}
|
|
} // namespace
|
|
|
|
class BackendWithCompiler : public PyTorchBackendInterface {
|
|
public:
|
|
// Constructor.
|
|
explicit BackendWithCompiler() {}
|
|
virtual ~BackendWithCompiler() = default;
|
|
|
|
bool is_available() override {
|
|
return true;
|
|
}
|
|
|
|
// Since the actual compilation is done AOT,
|
|
c10::impl::GenericDict compile(
|
|
c10::IValue processed,
|
|
c10::impl::GenericDict method_compile_spec) override {
|
|
auto dict = processed.toGenericDict();
|
|
auto handles = c10::Dict<std::string, std::vector<std::string>>();
|
|
for (const auto& kv : dict) {
|
|
auto tokens = parseMethodHandle(kv.value().toStringRef());
|
|
handles.insert(kv.key().toStringRef(), tokens);
|
|
}
|
|
return c10::impl::toGenericDict(handles);
|
|
}
|
|
|
|
c10::impl::GenericList execute(
|
|
c10::IValue handle,
|
|
c10::impl::GenericList inputs) override {
|
|
TORCH_INTERNAL_ASSERT(inputs.size() == 2);
|
|
c10::IValue val0 = inputs[0];
|
|
at::Tensor x = val0.toTensor();
|
|
c10::IValue val1 = inputs[1];
|
|
at::Tensor h = val1.toTensor();
|
|
|
|
c10::List<at::Tensor> output_list;
|
|
double scalar_val = 1.0;
|
|
for (const auto& token : handle.toList()) {
|
|
IValue val = token;
|
|
auto instruction = std::string(IValue(token).toStringRef());
|
|
double const_val = 1.0;
|
|
if (instruction.rfind("prim::Constant", 0) == 0) {
|
|
TORCH_CHECK(
|
|
instruction.size() > 15,
|
|
"Constant value is expected in ",
|
|
instruction);
|
|
auto sub = instruction.substr(15);
|
|
const_val = stod(sub);
|
|
} else if (token == "aten::add") {
|
|
output_list.emplace_back(x.add(h, const_val));
|
|
} else if (token == "aten::sub") {
|
|
output_list.emplace_back(x.sub(h, const_val));
|
|
} else {
|
|
TORCH_CHECK(
|
|
false,
|
|
"Instruction, ",
|
|
instruction,
|
|
" is not supported. ",
|
|
"Contact the backend POC for details. ");
|
|
}
|
|
}
|
|
return c10::impl::toList(output_list);
|
|
}
|
|
};
|
|
|
|
namespace {
|
|
// For this backend, the actual compilation happens in preprocess function AOT.
|
|
// Put here for demonstration of backend
|
|
// as a whole piece. It's used when compilation is required. A dummy function
|
|
// can be passed when there's no usage of compilation in runtime backend lib.
|
|
c10::IValue preprocess(
|
|
const Module& mod,
|
|
const c10::Dict<IValue, IValue>& method_compile_spec) {
|
|
// The output of this process would produce a dictionary
|
|
// Key: method name.
|
|
// Val: compiled blob (represented by a string).
|
|
c10::Dict<IValue, IValue> compiled(StringType::get(), StringType::get());
|
|
for (const auto& method : mod.get_methods()) {
|
|
const auto graph = method.function().graph()->copy();
|
|
auto key = method.name();
|
|
std::stringstream ss;
|
|
for (const auto& node : graph->nodes()) {
|
|
switch (node->kind()) {
|
|
case prim::Constant:
|
|
ss << node->kind().toDisplayString() << "#"
|
|
<< toIValue(node->output()).value();
|
|
break;
|
|
case aten::add:
|
|
ss << node->kind().toQualString();
|
|
break;
|
|
case aten::sub:
|
|
ss << node->kind().toQualString();
|
|
break;
|
|
default:
|
|
TORCH_CHECK(
|
|
false,
|
|
"The node of ",
|
|
node->kind().toQualString(),
|
|
" is not supported in this compiler. Source code: ",
|
|
node->sourceRange().str());
|
|
break;
|
|
}
|
|
ss << ",";
|
|
}
|
|
std::string blob = ss.str();
|
|
if (!blob.empty()) {
|
|
blob.pop_back();
|
|
}
|
|
compiled.insert(method.name(), blob);
|
|
}
|
|
return compiled;
|
|
}
|
|
|
|
static auto cls = torch::jit::backend<BackendWithCompiler>(
|
|
"backend_with_compiler_demo",
|
|
preprocess);
|
|
} // namespace
|
|
|
|
} // namespace jit
|
|
} // namespace torch
|