mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-06 12:20:52 +01:00
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/47023 DeviceType pretty clearly only needs 1 byte. DeviceIndex only needs 1 byte given that machines don't have anywhere near 255 GPUs in them as far as I know. ghstack-source-id: 116901430 Test Plan: Existing tests, added assertion to catch if my assumption about DeviceIndex is incorrect Reviewed By: dzhulgakov Differential Revision: D24605460 fbshipit-source-id: 7c9a89027fcf8eebd623b7cdbf6302162c981cd2
158 lines
4.8 KiB
C++
158 lines
4.8 KiB
C++
#include <gtest/gtest.h>
|
|
#include <test/cpp/api/support.h>
|
|
|
|
#include <torch/torch.h>
|
|
|
|
#include <string>
|
|
#include <vector>
|
|
|
|
using namespace at;
|
|
using namespace torch::test;
|
|
|
|
// A macro so we don't lose location information when an assertion fails.
|
|
#define REQUIRE_OPTIONS(device_, index_, type_, layout_) \
|
|
ASSERT_EQ(options.device().type(), Device((device_), (index_)).type()); \
|
|
ASSERT_TRUE( \
|
|
options.device().index() == Device((device_), (index_)).index()); \
|
|
ASSERT_EQ(options.dtype(), (type_)); \
|
|
ASSERT_TRUE(options.layout() == (layout_))
|
|
|
|
#define REQUIRE_TENSOR_OPTIONS(device_, index_, type_, layout_) \
|
|
ASSERT_EQ(tensor.device().type(), Device((device_), (index_)).type()); \
|
|
ASSERT_EQ(tensor.device().index(), Device((device_), (index_)).index()); \
|
|
ASSERT_EQ(tensor.scalar_type(), (type_)); \
|
|
ASSERT_TRUE(tensor.options().layout() == (layout_))
|
|
|
|
TEST(TensorOptionsTest, DefaultsToTheRightValues) {
|
|
TensorOptions options;
|
|
REQUIRE_OPTIONS(kCPU, -1, kFloat, kStrided);
|
|
}
|
|
|
|
TEST(TensorOptionsTest, UtilityFunctionsReturnTheRightTensorOptions) {
|
|
auto options = dtype(kInt);
|
|
REQUIRE_OPTIONS(kCPU, -1, kInt, kStrided);
|
|
|
|
options = layout(kSparse);
|
|
REQUIRE_OPTIONS(kCPU, -1, kFloat, kSparse);
|
|
|
|
options = device({kCUDA, 1});
|
|
REQUIRE_OPTIONS(kCUDA, 1, kFloat, kStrided);
|
|
|
|
options = device_index(1);
|
|
REQUIRE_OPTIONS(kCUDA, 1, kFloat, kStrided);
|
|
|
|
options = dtype(kByte).layout(kSparse).device(kCUDA, 2).device_index(3);
|
|
REQUIRE_OPTIONS(kCUDA, 3, kByte, kSparse);
|
|
}
|
|
|
|
TEST(TensorOptionsTest, ConstructsWellFromCPUTypes) {
|
|
TensorOptions options;
|
|
REQUIRE_OPTIONS(kCPU, -1, kFloat, kStrided);
|
|
|
|
options = TensorOptions({kCPU, 0});
|
|
REQUIRE_OPTIONS(kCPU, 0, kFloat, kStrided);
|
|
|
|
options = TensorOptions("cpu:0");
|
|
REQUIRE_OPTIONS(kCPU, 0, kFloat, kStrided);
|
|
|
|
options = TensorOptions(kInt);
|
|
REQUIRE_OPTIONS(kCPU, -1, kInt, kStrided);
|
|
|
|
options = TensorOptions(getDeprecatedTypeProperties(Backend::SparseCPU, kFloat));
|
|
REQUIRE_OPTIONS(kCPU, -1, kFloat, kSparse);
|
|
|
|
options = TensorOptions(getDeprecatedTypeProperties(Backend::SparseCPU, kByte));
|
|
REQUIRE_OPTIONS(kCPU, -1, kByte, kSparse);
|
|
}
|
|
|
|
TEST(TensorOptionsTest, ConstructsWellFromCPUTensors) {
|
|
auto options = empty(5, kDouble).options();
|
|
REQUIRE_OPTIONS(kCPU, -1, kDouble, kStrided);
|
|
|
|
options = empty(5, getDeprecatedTypeProperties(Backend::SparseCPU, kByte)).options();
|
|
REQUIRE_OPTIONS(kCPU, -1, kByte, kSparse);
|
|
}
|
|
|
|
TEST(TensorOptionsTest, ConstructsWellFromVariables) {
|
|
auto options = torch::empty(5).options();
|
|
REQUIRE_OPTIONS(kCPU, -1, kFloat, kStrided);
|
|
ASSERT_FALSE(options.requires_grad());
|
|
|
|
options = torch::empty(5, at::requires_grad()).options();
|
|
REQUIRE_OPTIONS(kCPU, -1, kFloat, kStrided);
|
|
ASSERT_FALSE(options.requires_grad());
|
|
}
|
|
|
|
TEST(DeviceTest, ParsesCorrectlyFromString) {
|
|
Device device("cpu:0");
|
|
ASSERT_EQ(device, Device(DeviceType::CPU, 0));
|
|
|
|
device = Device("cpu");
|
|
ASSERT_EQ(device, Device(DeviceType::CPU));
|
|
|
|
device = Device("cuda:123");
|
|
ASSERT_EQ(device, Device(DeviceType::CUDA, 123));
|
|
|
|
device = Device("cuda");
|
|
ASSERT_EQ(device, Device(DeviceType::CUDA));
|
|
|
|
device = Device("mkldnn");
|
|
ASSERT_EQ(device, Device(DeviceType::MKLDNN));
|
|
|
|
device = Device("opengl");
|
|
ASSERT_EQ(device, Device(DeviceType::OPENGL));
|
|
|
|
device = Device("opencl");
|
|
ASSERT_EQ(device, Device(DeviceType::OPENCL));
|
|
|
|
device = Device("ideep");
|
|
ASSERT_EQ(device, Device(DeviceType::IDEEP));
|
|
|
|
device = Device("hip");
|
|
ASSERT_EQ(device, Device(DeviceType::HIP));
|
|
|
|
device = Device("hip:123");
|
|
ASSERT_EQ(device, Device(DeviceType::HIP, 123));
|
|
|
|
std::vector<std::string> badnesses = {
|
|
"", "cud:1", "cuda:", "cpu::1", ":1", "3", "tpu:4", "??"};
|
|
for (const auto& badness : badnesses) {
|
|
ASSERT_ANY_THROW({ Device d(badness); });
|
|
}
|
|
}
|
|
|
|
TEST(DefaultDtypeTest, CanSetAndGetDefaultDtype) {
|
|
AutoDefaultDtypeMode dtype_mode(kFloat);
|
|
|
|
ASSERT_EQ(at::get_default_dtype(), kFloat);
|
|
set_default_dtype(caffe2::TypeMeta::Make<int>());
|
|
ASSERT_EQ(at::get_default_dtype(), kInt);
|
|
}
|
|
|
|
TEST(DefaultDtypeTest, NewTensorOptionsHasCorrectDefault) {
|
|
AutoDefaultDtypeMode dtype_mode(kFloat);
|
|
|
|
set_default_dtype(caffe2::TypeMeta::Make<int>());
|
|
ASSERT_EQ(at::get_default_dtype(), kInt);
|
|
TensorOptions options;
|
|
ASSERT_EQ(options.dtype(), kInt);
|
|
}
|
|
|
|
TEST(DefaultDtypeTest, NewTensorsHaveCorrectDefaultDtype) {
|
|
AutoDefaultDtypeMode dtype_mode(kFloat);
|
|
set_default_dtype(caffe2::TypeMeta::Make<int>());
|
|
{
|
|
auto tensor = torch::ones(5);
|
|
ASSERT_EQ(tensor.dtype(), kInt);
|
|
}
|
|
set_default_dtype(caffe2::TypeMeta::Make<double>());
|
|
{
|
|
auto tensor = torch::ones(5);
|
|
ASSERT_EQ(tensor.dtype(), kDouble);
|
|
}
|
|
{
|
|
auto tensor = torch::ones(5, kFloat);
|
|
ASSERT_EQ(tensor.dtype(), kFloat);
|
|
}
|
|
}
|